Multi-fidelity physics-based method for robust optimization with application to a hovering rotor airfoil

The paper presents a multi-fidelity robust optimization technique with application to the design of rotor blade airfoils in hover. A genetic algorithm is coupled with a non-intrusive uncertainty propagation technique based on Polynomial Chaos expansion to determine the robust optimal airfoils that maximize the mean value of the aerodynamic efficiency while minimizing the variance, under uncertain operating conditions. Uncertainties on the blade pitch angle and induced velocity are considered. To deal with the variable operating conditions induced by the considered uncertainties and to alleviate the computational cost of the optimization procedure, a multifidelity strategy is developed which exploits two aerodynamic models of different fidelity. The two models corresponds to different physical descrip-tions of the flowfield around the airfoil; thus, the multi-fidelity method employs the low-fidelity model in regions of the stochastic space where the physics of the problem is well-captured by the model, and switches to high-fidelity estimates only where needed. The proposed robust optimization technique is compared with the robust optimization based on the high-fidelity aerodynamic model and the deterministic optimization, to assess the capability of finding a consistent Pareto set, and to evaluate the numerical efficiency. The results obtained show how the robust multi-fidelity

[1]  Marko Becker,et al.  The Dynamics And Thermodynamics Of Compressible Fluid Flow , 2016 .

[2]  Paola Cinnella,et al.  Multi-fidelity optimization strategy for the industrial aerodynamic design of helicopter rotor blades , 2015 .

[3]  John Dalsgaard Sørensen,et al.  Impact of uncertainty in airfoil characteristics on wind turbine extreme loads , 2015 .

[4]  E. McBean,et al.  Sensor Placement Under Nodal Demand Uncertainty for Water Distribution Systems , 2014 .

[5]  C. Allen,et al.  CFD-based optimization of hovering rotors using radial basis functions for shape parameterization and mesh deformation , 2013 .

[6]  Jae-Woo Lee,et al.  Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance , 2013 .

[7]  Markus P. Rumpfkeil,et al.  Optimizations Under Uncertainty Using Gradients, Hessians, and Surrogate Models , 2013 .

[8]  Dimitri J. Mavriplis,et al.  Derivative-Enhanced Variable Fidelity Surrogate Modeling for Aerodynamic Functions , 2013 .

[9]  Leo Wai-Tsun Ng,et al.  Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .

[10]  Wataru Yamazaki,et al.  Efficient Robust Design Optimization by Variable Fidelity Kriging Model , 2012 .

[11]  Slawomir Koziel,et al.  Robust Airfoil Optimization under Inherent and Model-form Uncertainties Using Stochastic Expansions , 2012 .

[12]  Patrice Castonguay,et al.  Aerodynamic shape optimization of hovering rotor blades using a Non-Linear Frequency Domain approach , 2011 .

[13]  Ranjan Ganguli,et al.  Uncertainty Quantification in Helicopter Performance Using Monte Carlo Simulations , 2011 .

[14]  Michel van Tooren,et al.  Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles , 2011 .

[15]  Eugenio Oñate,et al.  Active transonic aerofoil design optimization usingrobust multiobjective evolutionary algorithms , 2011 .

[16]  Marin D. Guenov,et al.  Novel Uncertainty Propagation Method for Robust Aerodynamic Design , 2011 .

[17]  Pietro Marco Congedo,et al.  Shape optimization of an airfoil in a BZT flow with multiple-source uncertainties , 2011 .

[18]  Christian B Allen,et al.  Computational-Fluid-Dynamics-Based Twist Optimization of Hovering Rotors , 2010 .

[19]  Slawomir Koziel,et al.  Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction , 2010, J. Comput. Sci..

[20]  Dongbin Xiu,et al.  Numerical approach for quantification of epistemic uncertainty , 2010, J. Comput. Phys..

[21]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[22]  Pierre Sagaut,et al.  A gPC-based approach to uncertain transonic aerodynamics , 2010 .

[23]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[24]  Geoffrey T. Parks,et al.  Robust Aerodynamic Design Optimization Using Polynomial Chaos , 2009 .

[25]  Kyle,et al.  Application of Low and High Fidelity Simulation Tools to Helicopter Rotor Blade Optimization , 2009 .

[26]  Jesús García,et al.  An approach to stopping criteria for multi-objective optimization evolutionary algorithms: The MGBM criterion , 2009, 2009 IEEE Congress on Evolutionary Computation.

[27]  N. Stander,et al.  A Study on the Convergence of Multiobjective Evolutionary Algorithms , 2009 .

[28]  Gerhart I. Schuëller,et al.  Computational methods in optimization considering uncertainties – An overview , 2008 .

[29]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[30]  Thomas Rendall,et al.  Development of Generic CFD-Based Aerodynamic Optimisation Tools for Helicopter Rotor Blades , 2007 .

[31]  John E. Bussoletti,et al.  "Fundamental" Parameteric Geometry Representations for Aircraft Component Shapes , 2006 .

[32]  Valentino Pediroda,et al.  A Fast and Robust Adaptive Methodology for Airfoil Design Under Uncertainties based on Game Theory and Self- Organising-Map Theory , 2006 .

[33]  A. Le Pape,et al.  Numerical optimization of helicopter rotor aerodynamic performance in hover , 2005 .

[34]  Ilan Kroo,et al.  Two-Level Multifidelity Design Optimization Studies for Supersonic Jets , 2005 .

[35]  Jon C. Helton,et al.  An exploration of alternative approaches to the representation of uncertainty in model predictions , 2003, Reliab. Eng. Syst. Saf..

[36]  Mark Drela,et al.  Implicit Implementation of the Full e^n Transition Criterion , 2003 .

[37]  van der Wall,et al.  2nd HHC Aeroacoustic Rotor Test (HART II) - Part I: Test Documentation - , 2003 .

[38]  Antony Jameson,et al.  Aerodynamic Shape Optimization Using the Adjoint Method , 2003 .

[39]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[40]  William G. Bousman,et al.  Airfoil Design and Rotorcraft Performance , 2002 .

[41]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[42]  Sharon L. Padula,et al.  Probabilistic approach to free-form airfoil shape optimization under uncertainty , 2002 .

[43]  William A. Crossley,et al.  Aerodynamic and Aeroacoustic Optimization of Rotorcraft Airfoils via a Parallel Genetic Algorithm , 2000 .

[44]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[45]  A. Jameson,et al.  Aerodynamic shape optimization techniques based on control theory , 1998 .

[46]  J. Peraire,et al.  Practical Three-Dimensional Aerodynamic Design and Optimization Using Unstructured Meshes , 1997 .

[47]  J. Périaux,et al.  Shape design optimization in 2D aerodynamics using Genetic Algorithms on parallel computers , 1996 .

[48]  A. Jameson Optimum aerodynamic design using CFD and control theory , 1995 .

[49]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[50]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[51]  M. Drela XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils , 1989 .

[52]  M. Giles,et al.  Viscous-inviscid analysis of transonic and low Reynolds number airfoils , 1986 .

[53]  M. Giles,et al.  Two-Dimensional Transonic Aerodynamic Design Method , 1987 .

[54]  R. M. Hicks,et al.  Wing Design by Numerical Optimization , 1977 .