Singularity conditions for the non-existence of a common quadratic Lyapunov function for pairs of third order linear time invariant dynamic systems

Abstract The condition that a finite collection of stable matrices { A 1 , … ,  A M } has no common quadratic Lyapunov function (CQLF) is formulated as a hierarchy of singularity conditions for block matrices involving a number of unknown parameters. These conditions are applied to the case of two stable 3 × 3 matrices, where they are used to derive necessary and sufficient conditions for the non-existence of a CQLF.

[1]  I. Lewkowicz A necessary condition for quantitative exponential stability of linear state-space systems , 1999 .

[2]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[3]  Tatsushi Ooba,et al.  Two conditions concerning common quadratic Lyapunov functions for linear systems , 1997, IEEE Trans. Autom. Control..

[4]  Daniel Hershkowitz,et al.  On cones and stability , 1998 .

[5]  Diederich Hinrichsen,et al.  Control of Uncertain Systems , 1990 .

[6]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[7]  Robert Shorten,et al.  On common quadratic Lyapunov functions for pairs of stable LTI systems whose system matrices are in companion form , 2003, IEEE Trans. Autom. Control..

[8]  Robert Shorten,et al.  On common quadratic Lyapunov functions for stable discrete‐time LTI systems , 2004 .

[9]  P. Curran,et al.  On the dynamic instability of a class of switching system , 2000 .

[10]  T. Andô,et al.  Set of matrices with common Lyapunov solution , 2001 .

[11]  D. Hinrichsen,et al.  Real and Complex Stability Radii: A Survey , 1990 .

[12]  Robert Shorten,et al.  A result on common quadratic Lyapunov functions , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[13]  N. Cohen,et al.  A pair of matrices sharing common Lyapunov solutions—A closer look , 2003 .

[14]  Robert Shorten,et al.  Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time‐invariant systems , 2002 .

[15]  Daizhan Cheng,et al.  On quadratic Lyapunov functions , 2003, IEEE Trans. Autom. Control..

[16]  Raphael Loewy,et al.  On ranges of real Lyapunov transformations , 1976 .

[17]  K. Narendra,et al.  A common Lyapunov function for stable LTI systems with commuting A-matrices , 1994, IEEE Trans. Autom. Control..

[18]  Y. Pyatnitskiy,et al.  An iterative method of Lyapunov function construction for differential inclusions , 1987 .

[19]  Christopher King,et al.  On the existence of a common quadratic Lyapunov function for a rank one difference , 2004 .

[20]  Izchak Lewkowicz,et al.  A necessary and sufficient criterion for the stability of a convex set of matrices , 1993, IEEE Trans. Autom. Control..

[21]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[22]  Nir Cohen,et al.  Convex invertible cones and the Lyapunov equation , 1997 .

[23]  K. Narendra,et al.  A Geometrical Criterion for the Stability of Certain Nonlinear Nonautonomous Systems , 1964 .