Sobolev duals of random frames

Sobolev dual frames have recently been proposed as optimal alternative reconstruction operators that are specifically tailored for Sigma-Delta (¿¿) quantization of frame coefficients. While the canonical dual frame of a given analysis (sampling) frame is optimal for the white-noise type quantization error of Pulse Code Modulation (PCM), the Sobolev dual offers significant reduction of the reconstruction error for the colored-noise of ¿¿ quantization. However, initial quantitative results concerning the use of Sobolev dual frames required certain regularity assumptions on the given analysis frame in order to deduce improvements of performance on reconstruction that are similar to those achieved in the standard setting of bandlimited functions. In this paper, we show that these regularity assumptions can be lifted for (Gaussian) random frames with high probability on the choice of the analysis frame. Our results are immediately applicable in the traditional oversampled (coarse) quantization scenario, but also extend to compressive sampling of sparse signals.