Boolean Algebras with an Automorphism Group: a Framework for Lukasiewicz Logic
暂无分享,去创建一个
[1] Enrique H. Ruspini,et al. On the semantics of fuzzy logic , 1991, Int. J. Approx. Reason..
[2] R. Goodstein. Boolean algebra , 1963 .
[3] Hiroakira Ono,et al. Logics without the contraction rule , 1985, Journal of Symbolic Logic.
[4] Jeff B. Paris,et al. Semantics for fuzzy logic supporting truth functionality , 2000 .
[5] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[6] Christian G. Fermüller,et al. Combining Supervaluation and Degree Based Reasoning Under Vagueness , 2006, LPAR.
[7] Yukiyosi Kawada. Über die Existenz der invarianten Integrale , 1944 .
[8] Alasdair Urquhart,et al. Basic Many-Valued Logic , 2001 .
[9] Majid Alizadeh,et al. Boolean Algebras , 2022, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.
[10] Christian G. Fermüller,et al. REVISITING GILES ’ S GAME Reconciling Fuzzy Logic and Supervaluation , 2005 .
[11] S. Kakutani,et al. WEAKLY WANDERING SETS AND INVARIANT MEASURES , 1964 .
[12] Thomas Vetterlein,et al. Fuzzy logic as a logic of the expressive strength of information , 2008, Soft Comput..
[13] J. K. Hunter,et al. Measure Theory , 2007 .
[14] Jeff B. Paris,et al. A semantics for Fuzzy Logic , 1997, Soft Comput..