Design of μ-CNC machining centre with carbon/epoxy composite–aluminium hybrid structures containing friction layers for high damping capacity

[1]  N. Zahlan,et al.  Design and fabrication of composite components; the spring-forward phenomenon , 1989 .

[2]  Alexander H. Slocum,et al.  An integrated approach to structural damping , 1996 .

[3]  Dai Gil Lee,et al.  Manufacture of one-piece automotive drive shafts with aluminum and composite materials , 1997 .

[4]  Dai Gil Lee,et al.  Damping improvement of machine tool columns with polymer matrix fiber composite material , 1998 .

[5]  Jin Kyung Choi,et al.  Steel-composite hybrid headstock for high-precision grinding machines , 2001 .

[6]  Seung-Hwan Chang,et al.  Design of inspecting machine for next generation LCD glass panel with high modulus carbon/epoxy composites , 2004 .

[7]  C. M. Kim,et al.  APPLICATION OF VISCOELASTIC DAMPING FOR PASSIVE VIBRATION CONTROL IN AUTOMOTIVE ROOF USING EQUIVALENT PROPERTIES , 2005 .

[8]  Hak-Sung Kim,et al.  Optimal design of the press fit joint for a hybrid aluminum/composite drive shaft , 2005 .

[9]  Seung-Hwan Chang,et al.  Parametric study on design of composite–foam–resin concrete sandwich structures for precision machine tool structures , 2006 .

[10]  J. Berthelot,et al.  Damping analysis of composite materials and structures , 2008 .

[11]  Cornel Mihai Nicolescu,et al.  Design and implementation of tuned viscoelastic dampers for vibration control in milling , 2008 .

[12]  Seung-Hwan Chang,et al.  Robust design of microfactory elements with high stiffness and high damping characteristics using foam-composite sandwich structures , 2008 .

[13]  Erhan Budak,et al.  A closed-form approach for identification of dynamical contact parameters in spindle–holder–tool assemblies , 2009 .