Excitonic properties of ordered and disordered SiGe nanocrystals

The excitonic properties of ordered and disordered Si/Ge nanocrystals (NCs) are investigated by means of ab initio calculations. In the former group, we investigate Si(core)/Ge(shell) and Ge(core)/Si(shell) NCs, while alloyed Si"1"-"xGe"x NCs are studied in the latter focusing on the role of the molar fraction x. Concerning ordered NCs, we show that Ge/Si (Si/Ge) NCs exhibit type II confinement in the conduction (valence) band. As for disordered NCs, we show that optical gaps and radiative recombination lifetimes decrease with x.

[1]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[2]  A. Zdetsis,et al.  High accuracy calculations of the optical gap and absorption spectrum of oxygen contaminated Si nanocrystals. , 2006, Physical chemistry chemical physics : PCCP.

[3]  J. Jorné,et al.  Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen , 1999 .

[4]  Valder N. Freire,et al.  Hole-versus electron-based operations in SiGe nanocrystal nonvolatile memories , 2007 .

[5]  J. Chelikowsky,et al.  Electron affinities and ionization energies in Si and Ge nanocrystals , 2004 .

[6]  G. A. Farias,et al.  Excitons in Si1-xGex nanocrystals : Ab initio calculations , 2008 .

[7]  F. Bechstedt,et al.  Excitation energies and radiative lifetimes of Ge1-xSix nanocrystals: alloying versus confinement effects. , 2003, Physical review letters.

[8]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[9]  H. Kohno,et al.  Core-shell SiGe whiskers with composition gradient along the axial direction: Cross-sectional analysis , 2005 .

[10]  F. Bechstedt,et al.  Optical properties of Ge and Si nanocrystallites from ab initio calculations. II. Hydrogenated nanocrystallites , 2002 .

[11]  Gerhard Klimeck,et al.  Performance analysis of a Ge/Si core/shell nanowire field-effect transistor. , 2006, Nano letters.

[12]  S. Takeoka,et al.  Control of photoluminescence energy of Si nanocrystals by Ge doping , 2000 .

[13]  R. Martin,et al.  Comparison of the optical response of hydrogen-passivated germanium and silicon clusters , 2005 .

[14]  Maeda,et al.  Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism. , 1995, Physical review. B, Condensed matter.

[15]  Lin-Wang Wang,et al.  First principle study of core/shell structure quantum dots , 2004 .

[16]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[17]  Enhanced radiative transition inSinGemnanoclusters , 2003, cond-mat/0304025.

[18]  S. Takeoka,et al.  Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices , 1998 .

[19]  S. Takeoka,et al.  Photoluminescence from Si 1 − x Ge x alloy nanocrystals , 2000 .

[20]  B. Delley From molecules to solids with the DMol3 approach , 2000 .