Microstructure and electrochemical behavior of layered cathodes for molten carbonate fuel cell

[1]  T. Wejrzanowski,et al.  Insight into cathode microstructure effect on the performance of molten carbonate fuel cell , 2021, Journal of Power Sources.

[2]  S. Hussain,et al.  Review of solid oxide fuel cell materials: cathode, anode, and electrolyte , 2020, Energy Transitions.

[3]  Choong-Gon Lee,et al.  Microstructure driven design of porous electrodes for molten carbonate fuel cell application: Recent progress , 2020 .

[4]  J. Milewski,et al.  Metallic foam supported electrodes for molten carbonate fuel cells , 2020 .

[5]  T. Norby,et al.  Silver coated cathode for molten carbonate fuel cells , 2020 .

[6]  A. Hepbasli,et al.  Performance assessment of a biogas fuelled molten carbonate fuel cell-thermophotovoltaic cell-thermally regenerative electrochemical cycle-absorption refrigerator-alkaline electrolyzer for multigenerational applications , 2019, International Journal of Hydrogen Energy.

[7]  S. Jang,et al.  Effect of LiNiO2-coated cathode on cell performance in molten carbonate fuel cells , 2019, International Journal of Hydrogen Energy.

[8]  T. Wejrzanowski,et al.  Microstructure effect on the permeability of the tape-cast open-porous materials , 2019, Materials & Design.

[9]  R. Sharma,et al.  Microstructural correlations for specific surface area and triple phase boundary length for composite electrodes of solid oxide cells , 2019, Journal of Power Sources.

[10]  B. Dunn,et al.  Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage , 2018, The Journal of Physical Chemistry C.

[11]  K. Tammeveski,et al.  Oxygen Reduction Reaction on Silver Catalysts in Alkaline Media: a Minireview , 2018, ChemElectroChem.

[12]  E. Zschech,et al.  Characterization of Spatial Distribution of Electrolyte in Molten Carbonate Fuel Cell Cathodes , 2018 .

[13]  O. Šedivý,et al.  Investigation of the relationship between morphology and permeability for open-cell foams using virtual materials testing , 2018, Materials & Design.

[14]  K. Fung,et al.  Manufacturing of γ-LiAlO2 matrix for molten carbonate fuel cell by high-energy milling , 2018 .

[15]  K. Kurzydłowski,et al.  Catalytic activity of NiO cathode in molten carbonate fuel cells , 2018 .

[16]  E. Zschech,et al.  Multi-modal porous microstructure for high temperature fuel cell application , 2018 .

[17]  S. Nam,et al.  Performance and properties of anodes reinforced with metal oxide nanoparticles for molten carbonate fuel cells , 2017 .

[18]  V. Schmidt,et al.  Analysis of the 3D microstructure of tape-cast open-porous materials via a combination of experiments and modeling , 2017 .

[19]  K. Kurzydłowski,et al.  Atomistic insight into the electrode reaction mechanism of the cathode in molten carbonate fuel cells , 2017 .

[20]  Linda Barelli,et al.  Molten Carbonate Fuel Cell performance analysis varying cathode operating conditions for carbon capture applications , 2017 .

[21]  Jong‐Won Lee,et al.  Conformal bi-layered perovskite/spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route , 2017 .

[22]  Jarosław Milewski,et al.  Status report on high temperature fuel cells in Poland – Recent advances and achievements , 2017 .

[23]  V. Lair,et al.  Influence of Cs and Rb additions in LiK and LiNa molten carbonates on the behaviour of MCFC commercial porous Ni cathode , 2017 .

[24]  V. Thangadurai,et al.  Trends in electrode development for next generation solid oxide fuel cells , 2016 .

[25]  Alexander Michaelis,et al.  Influence of Electrode Design and Contacting Layers on Performance of Electrolyte Supported SOFC/SOEC Single Cells , 2016, Materials.

[26]  K. Kurzydłowski,et al.  Design of open-porous materials for high-temperature fuel cells , 2016 .

[27]  K. Kurzydłowski,et al.  The influence of pore size variation on the pressure drop in open-cell foams , 2015 .

[28]  V. N. Nekrasov,et al.  Oxygen reduction on gold electrode in Li2CO3 / K2CO3 (62 / 38 mol %) molten electrolyte: experimental and simulation analysis , 2015 .

[29]  J. Bassat,et al.  Identification and modelling of the oxygen gas diffusion impedance in SOFC porous electrodes: application to Pr2NiO4+δ , 2015 .

[30]  G. Centi,et al.  Energy Related Catalysis , 2015 .

[31]  E. Ivers-Tiffée,et al.  The chemical oxygen surface exchange and bulk diffusion coefficient determined by impedance spectroscopy of porous La0.58Sr0.4Co0.2Fe0.8O3 − δ (LSCF) cathodes , 2015 .

[32]  U. Desideri,et al.  Modeling the performance of MCFC for various fuel and oxidant compositions , 2014 .

[33]  V. Schmidt,et al.  Quantitative relationships between microstructure and effective transport properties based on virtual materials testing , 2014 .

[34]  J. Hjelm,et al.  Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes , 2014 .

[35]  J. Robert Selman,et al.  Scientific and technical maturity of molten carbonate technology , 2012 .

[36]  Jonghee Han,et al.  Electrode performance of a new La0.6Sr0.4Co0.2Fe0.8O3 coated cathode for molten carbonate fuel cells , 2012 .

[37]  Anna Moreno,et al.  Strategies and new developments in the field of molten carbonates and high-temperature fuel cells in the carbon cycle , 2012 .

[38]  Sarbjit Giddey,et al.  Materials issues and recent developments in molten carbonate fuel cells , 2012, Journal of Solid State Electrochemistry.

[39]  Ermete Antolini,et al.  The stability of molten carbonate fuel cell electrodes: A review of recent improvements , 2011 .

[40]  Luciano Caprile,et al.  Carbon capture: Energy wasting technologies or the MCFCs challenge? , 2011 .

[41]  Jonghee Han,et al.  An Ag-Coated NiO Cathode for MCFCs Operating at Low Temperatures , 2011 .

[42]  K. Sundmacher Fuel Cell Engineering: Toward the Design of Efficient Electrochemical Power Plants , 2010 .

[43]  C. Xia,et al.  Fabrication and evaluation of Ag-impregnated BaCe0.8Sm0.2O2.9 composite cathodes for proton conducting solid oxide fuel cells , 2010 .

[44]  Joseph D. Fehribach,et al.  Triple Phase Boundaries in Solid-Oxide Cathodes , 2009, SIAM J. Appl. Math..

[45]  J. Irvine,et al.  Ni/C Slurries Based on Molten Carbonates as a Fuel for Hybrid Direct Carbon Fuel Cells , 2009 .

[46]  Jon G. Pharoah,et al.  Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes , 2009 .

[47]  Siglinda Perathoner,et al.  Catalysis: Role and Challenges for a Sustainable Energy , 2009 .

[48]  Ta-Jen Huang,et al.  Characterization of Cu, Ag and Pt added La0.6Sr0.4Co0.2Fe0.8O3−δ and gadolinia-doped ceria as solid oxide fuel cell electrodes by temperature-programmed techniques , 2009 .

[49]  Andrew Dicks,et al.  Fuel cells - Molten carbonate fuel cells: Overview , 2009 .

[50]  Koichi Asano,et al.  Applicability of molten carbonate fuel cells to various fuels , 2006 .

[51]  Piotr Tomczyk,et al.  MCFC versus other fuel cells—Characteristics, technologies and prospects , 2006 .

[52]  A. Manthiram,et al.  Electrochemical performance of Nd0.6Sr0.4Co0.5Fe0.5O3−δ–Ag composite cathodes in intermediate temperature solid oxide fuel cells , 2006 .

[53]  L. I. Kuznetsova,et al.  Features of high-temperature oxidation in air of silver and alloy Ag-Cu, and adsorption of oxygen on silver , 2006 .

[54]  Keonkuk Kim,et al.  TiO2-coated Ni powder as a new cathode material for molten carbonate fuel cells , 2006 .

[55]  N. Brandon,et al.  Engineering porous materials for fuel cell applications , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  Roberto Bove,et al.  Experimental comparison of MCFC performance using three different biogas types and methane , 2005 .

[57]  Fritz B. Prinz,et al.  The Triple Phase Boundary A Mathematical Model and Experimental Investigations for Fuel Cells , 2005 .

[58]  Qingchun Yu,et al.  Study of NiO cathode modified by rare earth oxide additive for MCFC by electrochemical impedance spectroscopy , 2004 .

[59]  K. Hu,et al.  Study of LiFeO2 coated NiO as cathodes for MCFC by electrochemical impedance spectroscopy , 2004 .

[60]  Carina Lagergren,et al.  A study on LiCoO2-rich cathode materials for the MCFC based on the LiCoO2–LiFeO2–NiO ternary system , 2004 .

[61]  Qingchun Yu,et al.  Study of NiO cathode modified by ZnO additive for MCFC , 2004 .

[62]  J. Molenda,et al.  Structural, electrical and electrochemical properties of LiNiO2 , 2002 .

[63]  P. Holtappels,et al.  Fabrication and performance of advanced multi-layer SOFC cathodes , 2002 .

[64]  M. T. Casais,et al.  Analysis by electrochemical impedance spectroscopy of new MCFC cathode materials , 2000 .

[65]  H. Wendt,et al.  Molten carbonate fuel cell research: Part I. Comparing cathodic oxygen reduction in lithium/potassium and lithium/sodium carbonate melts , 1999 .

[66]  M. Kleitz,et al.  Optimized SOFC electrode microstructure , 1996 .

[67]  M. Carewska,et al.  Development of molten carbonate fuel cell using novel cathode material , 1996 .

[68]  I. Stensgaard,et al.  THE REACTION OF CARBON DIOXIDE WITH AN OXYGEN PRECOVERED AG(110) SURFACE , 1995 .

[69]  J. R. Selman,et al.  The Polarization of Molten Carbonate Fuel Cell Electrodes I . Analysis of Steady‐State Polarization Data , 1991 .

[70]  I. Trachtenberg Polarization Studies of Molten Carbonate Fuel Cell Electrodes , 1964 .