Improved rolling contact fatigue performance of selective electron beam melted Ti6Al4V with the as-built surface using induction-heating assisted ultrasonic surface rolling process

[1]  Z. Wang,et al.  Enhanced rolling contact fatigue behavior of selective electron beam melted Ti6Al4V using the ultrasonic surface rolling process , 2021, Materials Science and Engineering: A.

[2]  Ming Chen,et al.  Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process , 2021 .

[3]  W. Cai,et al.  Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting , 2021 .

[4]  Z. Ren,et al.  Effects of ultrasonic surface rolling processing on the corrosion properties of uranium metal , 2021 .

[5]  Yalin Dong,et al.  Effects of Post-processing on the Surface Finish, Porosity, Residual Stresses, and Fatigue Performance of Additive Manufactured Metals: A Review , 2021, Journal of Materials Engineering and Performance.

[6]  Z. Xiao,et al.  Improved surface integrity of Ti6Al4V fabricated by selective electron beam melting using ultrasonic surface rolling processing , 2021 .

[7]  Yi Wu,et al.  Scanning strategy in selective laser melting (SLM): a review , 2021, The International Journal of Advanced Manufacturing Technology.

[8]  H. Liao,et al.  Effect of building directions on the surface roughness, microstructure, and tribological properties of selective laser melted Inconel 625 , 2021 .

[9]  Z. Wang,et al.  Modified wear behavior of selective laser melted Ti6Al4V alloy by direct current assisted ultrasonic surface rolling process , 2020 .

[10]  Ni Ao,et al.  Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process , 2019, Journal of Materials Science & Technology.

[11]  Z. Wang,et al.  Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy , 2019, Optics & Laser Technology.

[12]  Sunghak Lee,et al.  Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification , 2019, Materials Research Letters.

[13]  Z. Ren,et al.  Microstructure evolution in Ti64 subjected to laser-assisted ultrasonic nanocrystal surface modification , 2019, International Journal of Machine Tools and Manufacture.

[14]  Gary L. Doll,et al.  The effects of ultrasonic nanocrystal surface modification on the fatigue performance of 3D-printed Ti64 , 2017 .

[15]  Todd Palmer,et al.  Development of strength-hardness relationships in additively manufactured titanium alloys , 2017 .

[16]  Xiaoqiang Li,et al.  Effect of ultrasonic surface rolling at low temperatures on surface layer microstructure and properties of HIP Ti-6Al-4V alloy , 2017 .

[17]  A. Olver,et al.  Propagation of surface initiated rolling contact fatigue cracks in bearing steel , 2017 .

[18]  G. Song,et al.  Evolution of surface mechanical properties and microstructure of Ti6Al4V alloy induced by electropulsing-assisted ultrasonic surface rolling process , 2016 .

[19]  Nicola Senin,et al.  Surface texture metrology for metal additive manufacturing: a review , 2016 .

[20]  C. Emmelmann,et al.  Additive manufacturing of metals , 2016 .

[21]  Mohsen Seifi,et al.  Metal Additive Manufacturing: A Review of Mechanical Properties , 2016 .

[22]  S. P. Chenakin,et al.  Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy , 2016 .

[23]  M. Gónzalez-Martín,et al.  XPS Analysis of Ti6Al4V Oxidation Under UHV Conditions , 2014, Metallurgical and Materials Transactions A.

[24]  Lijun Wang,et al.  Finite element modeling of ultrasonic surface rolling process , 2011 .

[25]  Zhe-feng Zhang,et al.  General relationship between strength and hardness , 2011 .

[26]  Wang Dongpo,et al.  Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing , 2008 .

[27]  Dwayne Arola,et al.  Estimating the fatigue stress concentration factor of machined surfaces , 2002 .

[28]  Giovanni Straffelini,et al.  Dry sliding wear mechanisms of the Ti6Al4V alloy , 1997 .

[29]  O. Brümmer,et al.  Corundum Structure Oxides Studied by XPS , 1983 .