Histone modification: cause or cog?

[1]  B. Turner Environmental sensing by chromatin: An epigenetic contribution to evolutionary change , 2011, FEBS letters.

[2]  C. Allis,et al.  Operating on chromatin, a colorful language where context matters. , 2011, Journal of molecular biology.

[3]  R. Chen,et al.  Nucleosome fragility reveals novel functional states of chromatin and poises genes for activation. , 2011, Genome research.

[4]  Howard Y. Chang,et al.  A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression , 2011, Nature.

[5]  A. Shilatifard,et al.  The super elongation complex (SEC) and MLL in development and disease. , 2011, Genes & development.

[6]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[7]  X. Wang,et al.  An effect of DNA sequence on nucleosome occupancy and removal , 2011, Nature Structural &Molecular Biology.

[8]  Prashanth Athri,et al.  Polycomb preferentially targets stalled promoters of coding and noncoding transcripts. , 2011, Genome research.

[9]  B. Franklin Pugh,et al.  High-Resolution Genome-wide Mapping of the Primary Structure of Chromatin , 2011, Cell.

[10]  H. Madhani,et al.  Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. , 2011, Molecular cell.

[11]  Lovelace J. Luquette,et al.  Comprehensive analysis of the chromatin landscape in Drosophila , 2010, Nature.

[12]  B. Bernstein,et al.  Charting histone modifications and the functional organization of mammalian genomes , 2011, Nature Reviews Genetics.

[13]  Ming-Ming Zhou,et al.  Keeping it in the family: diverse histone recognition by conserved structural folds , 2010, Critical reviews in biochemistry and molecular biology.

[14]  Guillaume J. Filion,et al.  Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila Cells , 2010, Cell.

[15]  Michael P Washburn,et al.  Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II. , 2010, Genes & development.

[16]  David Carling,et al.  Signaling Kinase AMPK Activates Stress-Promoted Transcription via Histone H2B Phosphorylation , 2010, Science.

[17]  H. Jäckle,et al.  A genetic system to assess in vivo the functions of histones and histone modifications in higher eukaryotes , 2010, EMBO reports.

[18]  B. Pugh A preoccupied position on nucleosomes , 2010, Nature Structural &Molecular Biology.

[19]  Manolis Kellis,et al.  Discovery and characterization of chromatin states for systematic annotation of the human genome , 2010, Nature Biotechnology.

[20]  S. Henikoff,et al.  Genome-Wide Kinetics of Nucleosome Turnover Determined by Metabolic Labeling of Histones , 2010, Science.

[21]  Wendy A Bickmore,et al.  Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. , 2010, Molecular cell.

[22]  Xin Wang,et al.  A RSC/Nucleosome Complex Determines Chromatin Architecture and Facilitates Activator Binding , 2010, Cell.

[23]  Steven Chu,et al.  DNA methylation increases nucleosome compaction and rigidity. , 2010, Journal of the American Chemical Society.

[24]  Nir Friedman,et al.  High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. , 2010, Genome research.

[25]  B. van Steensel,et al.  UvA-DARE ( Digital Academic Repository ) Reading the maps : Organization and function of chromatin types in Drosophila Braunschweig , 2010 .

[26]  Harmit S. Malik,et al.  Multiple roles for heterochromatin protein 1 genes in Drosophila. , 2009, Annual review of genetics.

[27]  Bing Ren,et al.  Discovery and Annotation of Functional Chromatin Signatures in the Human Genome , 2009, PLoS Comput. Biol..

[28]  Dustin E. Schones,et al.  Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes , 2009, Cell.

[29]  A. Peters,et al.  Mechanisms of transcriptional repression by histone lysine methylation. , 2009, The International journal of developmental biology.

[30]  William Stafford Noble,et al.  Global mapping of protein-DNA interactions in vivo by digital genomic footprinting , 2009, Nature Methods.

[31]  G. Crawford,et al.  Mapping regulatory elements by DNaseI hypersensitivity chip (DNase-Chip). , 2009, Methods in molecular biology.

[32]  Michael Q. Zhang,et al.  Combinatorial patterns of histone acetylations and methylations in the human genome , 2008, Nature Genetics.

[33]  Steven Henikoff,et al.  Nucleosome destabilization in the epigenetic regulation of gene expression , 2008, Nature Reviews Genetics.

[34]  J. Gurdon,et al.  Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription , 2008, Nature Cell Biology.

[35]  Peter A. Jones,et al.  Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. , 2007, Cancer cell.

[36]  Matthias Mann,et al.  Selective Anchoring of TFIID to Nucleosomes by Trimethylation of Histone H3 Lysine 4 , 2007, Cell.

[37]  Jeffrey G. Linger,et al.  Chromatin Disassembly from the PHO5 Promoter Is Essential for the Recruitment of the General Transcription Machinery and Coactivators , 2007, Molecular and Cellular Biology.

[38]  Mark Ptashne,et al.  On the use of the word ‘epigenetic’ , 2007, Current Biology.

[39]  O. Rando,et al.  Global patterns of histone modifications. , 2007, Current opinion in genetics & development.

[40]  C. Allis,et al.  Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. , 2007, Molecular cell.

[41]  Christopher R. Vakoc,et al.  Profile of Histone Lysine Methylation across Transcribed Mammalian Chromatin , 2006, Molecular and Cellular Biology.

[42]  M. Pazin,et al.  Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions , 2006, Science.

[43]  D. Wotton,et al.  Faculty of 1000 evaluation for Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. , 2006 .

[44]  N. Friedman,et al.  Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae , 2005, PLoS biology.

[45]  Steven J Altschuler,et al.  Genomic characterization reveals a simple histone H4 acetylation code. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Jef D Boeke,et al.  Regulated nucleosome mobility and the histone code , 2004, Nature Structural &Molecular Biology.

[47]  J. Lieb,et al.  Evidence for nucleosome depletion at active regulatory regions genome-wide , 2004, Nature Genetics.

[48]  Saeed Tavazoie,et al.  Mapping Global Histone Acetylation Patterns to Gene Expression , 2004, Cell.

[49]  Charles Kooperberg,et al.  The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. , 2004, Genes & development.

[50]  Yi Zhang,et al.  The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. , 2004, Current opinion in genetics & development.

[51]  D. Moazed,et al.  Heterochromatin and Epigenetic Control of Gene Expression , 2003, Science.

[52]  Youngchang Kim,et al.  Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. , 2003, Genes & development.

[53]  H. Reinke,et al.  Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. , 2003, Molecular cell.

[54]  M. Johnston,et al.  The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. , 2003, Molecular cell.

[55]  D. Kioussis,et al.  Modulation of Heterochromatin Protein 1 Dynamics in Primary Mammalian Cells , 2003, Science.

[56]  Tom Misteli,et al.  Maintenance of Stable Heterochromatin Domains by Dynamic HP1 Binding , 2003, Science.

[57]  S. Jacobs,et al.  Structure of HP1 Chromodomain Bound to a Lysine 9-Methylated Histone H3 Tail , 2002, Science.

[58]  J. H. Waterborg,et al.  Dynamics of histone acetylation in vivo. A function for acetylation turnover? , 2002, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[59]  R. Kingston,et al.  Reconstitution of a functional core polycomb repressive complex. , 2001, Molecular cell.

[60]  S. Henikoff,et al.  The Hinge and Chromo Shadow Domain Impart Distinct Targeting of HP1-Like Proteins , 2001, Molecular and Cellular Biology.

[61]  D. Botstein,et al.  Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF , 2001, Nature.

[62]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[63]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[64]  C. Walsh,et al.  Cytosine methylation and the ecology of intragenomic parasites. , 1997, Trends in genetics : TIG.

[65]  M. Grunstein,et al.  Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: redundant and position-independent functions in assembly but not in gene regulation. , 1996, Genes & development.

[66]  J. C. Eissenberg,et al.  Functional analysis of the chromo domain of HP1. , 1995, The EMBO journal.

[67]  B. Morgan,et al.  Histone H4 and the maintenance of genome integrity. , 1995, Genes & development.

[68]  S. Elgin,et al.  Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. , 1989, European journal of cell biology.

[69]  M. Groudine,et al.  Chromosomal subunits in active genes have an altered conformation. , 1976, Science.