Spontaneous fluxon formation in annular josephson tunnel junctions

It has been argued by Zurek and Kibble that the likelihood of producing defects in a continuous phase transition depends in a characteristic way on the quench rate. In this paper we discuss our experiment for measuring the Zurek-Kibble (ZK) scaling exponent $\ensuremath{\sigma}$ for the production of fluxons in annular symmetric Josephson tunnel junctions. The predicted exponent is $\ensuremath{\sigma}=0.25,$ and we find $\ensuremath{\sigma}=0.27\ifmmode\pm\else\textpm\fi{}0.05.$ Further, there is agreement with the ZK prediction for the overall normalization.

[1]  P. McClintock,et al.  Expansion of Liquid 4He Through the Lambda Transition , 1998, cond-mat/9810107.

[2]  Niels Grønbech-Jensen,et al.  Phase-locking of long annular Josephson junctions coupled to an external rf magnetic field , 1991 .

[3]  Wen Xu,et al.  Big bang simulation in superfluid 3He-B -- Vortex nucleation in neutron-irradiated superflow , 1995 .

[4]  L. Bettencourt,et al.  Vortex string formation in a 3D U(1) temperature quench , 1998, hep-ph/9811426.

[5]  W. Zurek Cosmic strings in laboratory superfluids and the topological remnants of other phase transitions , 1993 .

[6]  T. Kibble,et al.  Some Implications of a Cosmological Phase Transition , 1980 .

[7]  P. V. E. McClintock,et al.  Generation of defects in superfluid 4He as an analogue of the formation of cosmic strings , 1994, Nature.

[8]  R Monaco,et al.  Zurek-Kibble domain structures: the dynamics of spontaneous vortex formation in annular Josephson tunnel junctions. , 2002, Physical review letters.

[9]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[10]  W. Zurek,et al.  Vortex formation in two dimensions: when symmetry breaks, how big are the pieces? , 1998, hep-ph/9801223.

[11]  P. McClintock,et al.  Nonappearance of vortices in fast mechanical expansions of liquid He=4 through the lambda transition , 1998, cond-mat/9808117.

[12]  Monaco,et al.  Testing the kibble-zurek scenario with annular josephson tunnel junctions , 2000, Physical review letters.

[13]  L. Frunzio,et al.  Investigation of low‐temperature I‐V curves of high‐quality Nb/Al‐AlOx/Nb Josephson junctions , 1992 .

[14]  D. J. Thouless,et al.  Strong-Coupling Limit in the Theory of Superconductivity , 1960 .

[15]  R. Rivers Zurek-Kibble Causality Bounds in Time-Dependent Ginzburg-Landau Theory and Quantum Field Theory , 2001, cond-mat/0105171.

[16]  R. Broom Some temperature‐dependent properties of niobium tunnel junctions , 1976 .

[17]  G. R. Pickett,et al.  Laboratory simulation of cosmic string formation in the early Universe using superfluid 3He , 1996, Nature.

[18]  J. Swihart,et al.  Field Solution for a Thin‐Film Superconducting Strip Transmission Line , 1961 .

[19]  Density of Kinks after a Quench: When Symmetry Breaks, How Big are the Pieces? , 1996, gr-qc/9607041.

[20]  Vinay Ambegaokar,et al.  Tunneling between superconductors , 1963 .

[21]  Wojciech Hubert Zurek,et al.  Cosmological experiments in condensed matter systems , 1996 .

[22]  On phase ordering behind the propagating front of a second-order transition , 1996, cond-mat/9612075.

[23]  A. Scott,et al.  Perturbation analysis of fluxon dynamics , 1978 .

[24]  Wen Xu,et al.  Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation , 1996, Nature.

[25]  Jiansong Gao,et al.  Submillimeter superconducting integrated receivers: Fabrication and yield , 2001 .

[26]  Hindmarsh,et al.  Defect formation and local gauge invariance , 2000, Physical review letters.

[27]  Carmi,et al.  Observation of spontaneous flux generation in a multi-josephson-junction loop , 2000, Physical review letters.

[28]  R. Monaco,et al.  Fluxon dynamics in long annular Josephson tunnel junctions , 1998 .

[29]  A. Barone,et al.  Physics and Applications of the Josephson Effect , 1982 .

[30]  S Boccaletti,et al.  Topological defects after a quench in a Bénard-Marangoni convection system. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  E. Bré,et al.  Common trends in particle and condensed matter physics: Proceedings of Les Houches Winter Advanced Study Institute, February 1980 , 1980 .

[32]  Roberto Monaco,et al.  Testing the Zurek-Kibble Causality Bounds with Annular Josephson Tunnel Junctions , 2001 .

[33]  Sara Ducci,et al.  Order Parameter Fragmentation after a Symmetry-Breaking Transition , 1999 .

[34]  I. Jacobs,et al.  Biquadratic Exchange and the Behavior of Some Antiferromagnetic Substances , 1963 .

[35]  W. H. Zurek,et al.  Cosmological experiments in superfluid helium? , 1985, Nature.