Nonlinear harmonically excited vibrations of plates with Zener material
暂无分享,去创建一个
[1] V. Popov,et al. Viscoelastic Materials , 2018, Active and Passive Vibration Damping.
[2] R. Lewandowski,et al. Geometrically nonlinear, steady state vibration of viscoelastic beams , 2017 .
[3] M. C. Ray,et al. Three-dimensional fractional derivative model of smart constrained layer damping treatment for composite plates , 2016 .
[4] Marco Amabili,et al. Damping for large-amplitude vibrations of plates and curved panels, Part 1: Modeling and experiments , 2016 .
[5] J. Korelc,et al. On path-following methods for structural failure problems , 2016 .
[6] Marco Amabili,et al. Nonlinear vibrations of viscoelastic rectangular plates , 2016 .
[7] D. Chakraborty,et al. Piezo-viscoelastically damped nonlinear frequency response of functionally graded plates with a heated plate-surface , 2016 .
[8] M. C. Ray,et al. Smart damping of geometrically nonlinear vibrations of functionally graded sandwich plates using 1–3 piezoelectric composites , 2016 .
[9] Hassan Haddadpour,et al. The effects of nonlinearities on the vibration of viscoelastic sandwich plates , 2014 .
[10] S. K. Sarangi,et al. Nonlinear finite element analysis of smart laminated composite sandwich plates , 2014 .
[11] M. Ray,et al. Control of geometrically nonlinear vibrations of skew laminated composite plates using skew or rectangular 1–3 piezoelectric patches , 2013 .
[12] Andrew Y. T. Leung,et al. Steady state response of fractionally damped nonlinear viscoelastic arches by residue harmonic homotopy , 2013 .
[13] M. Ray,et al. Active constrained layer damping of geometrically nonlinear vibrations of smart laminated composite sandwich plates using 1–3 piezoelectric composites , 2012 .
[14] M. Ghayesh. Nonlinear dynamic response of a simply-supported Kelvin–Voigt viscoelastic beam, additionally supported by a nonlinear spring , 2012 .
[15] Noël Challamel,et al. Nonlinear damping and forced vibration analysis of laminated composite beams , 2012 .
[16] M. Ghayesh. Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance , 2011 .
[17] S. K. Sarangi,et al. Active damping of geometrically nonlinear vibrations of laminated composite plates using vertically reinforced 1-3 piezoelectric composites , 2011 .
[18] El Mostafa Daya,et al. Linear and nonlinear vibrations analysis of viscoelastic sandwich beams , 2010 .
[19] Michel Potier-Ferry,et al. Nonlinear vibration of viscoelastic sandwich beams by the harmonic balance and finite element methods , 2010 .
[20] J.-J. Li,et al. Differential quadrature method for analyzing nonlinear dynamic characteristics of viscoelastic plates with shear effects , 2010 .
[21] S. Nima Mahmoodi,et al. Non-linear free vibrations of Kelvin-Voigt visco-elastic beams , 2007 .
[22] I. Podlubny,et al. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.
[23] Roger Ohayon,et al. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators , 2004 .
[24] Michel Potier-Ferry,et al. Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells , 2003 .
[25] Ji-Hwan Kim,et al. Nonlinear vibration of viscoelastic laminated composite plates , 2002 .
[26] Roman Lewandowski,et al. Computational formulation for periodic vibration of geometrically nonlinear structures—part 1: Theoretical background , 1997 .
[27] R. Lewandowski. Computational formulation for periodic vibration of geometrically nonlinear structures—part 2: Numerical strategy and examples , 1997 .
[28] S. Łukasiewicz,et al. Nonlinear damped vibrations of simply-supported rectangular sandwich plates , 1995, Nonlinear Dynamics.
[29] P. Cupiał,et al. Vibration and damping analysis of a three-layered composite plate with a viscoelastic mid-layer , 1995 .
[30] Roman Lewandowski,et al. Non-Linear Free Vibrations of Beams By the Finite Element and Continuation Methods , 1994 .
[31] Peter Wriggers,et al. Consistent linearization for path following methods in nonlinear FE analysis , 1986 .
[32] M. Crisfield. A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .
[33] Z. Pawlak,et al. Influence of temperature on dynamic characteristics of structures with VE dampers , 2016 .
[34] M. C. Ray,et al. Active control of geometrically nonlinear transient vibrations of laminated composite cylindrical panels using piezoelectric fiber reinforced composite , 2013 .
[35] Nader Jalili,et al. An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams , 2008 .
[36] E. Riks. An incremental approach to the solution of snapping and buckling problems , 1979 .