Characterization, Thermal and Antimicrobial Properties of Hybrid Cellulose Nanocomposite Films with in-Situ Generated Copper Nanoparticles in Tamarindus indica Nut Powder

[1]  M. Ramesh,et al.  Green Composite Using Agricultural Waste Reinforcement , 2021 .

[2]  R. A. Ilyas,et al.  A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment , 2019, Food Hydrocolloids.

[3]  S. Siengchin,et al.  Characterization, thermal and dynamic mechanical properties of poly(propylene carbonate) lignocellulosic Cocos nucifera shell particulate biocomposites , 2019, Materials Research Express.

[4]  S. Siengchin,et al.  Antimicrobial properties of poly(propylene) carbonate/Ag nanoparticle-modified tamarind seed polysaccharide with composite films , 2019, Ionics.

[5]  B. Ashok,et al.  Preparation and characterization of tamarind nut powder with in situ generated copper nanoparticles using one-step hydrothermal method , 2019, International Journal of Polymer Analysis and Characterization.

[6]  S. Siengchin,et al.  Biodegradable poly(propylene) carbonate using in-situ generated CuNPs coated Tamarindus indica filler for biomedical applications , 2019, Materials Today Communications.

[7]  Senthil Muthu Kumar Thiagamani,et al.  Influence of silver nanoparticles on the mechanical, thermal and antimicrobial properties of cellulose-based hybrid nanocomposites , 2019, Composites Part B: Engineering.

[8]  R. A. Ilyas,et al.  Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scale , 2019, Journal of Materials Research and Technology.

[9]  Senthil Muthu Kumar Thiagamani,et al.  Challenges of Biodegradable Polymers: An Environmental Perspective , 2019, Applied Science and Engineering Progress.

[10]  R. A. Ilyas,et al.  Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. , 2019, International journal of biological macromolecules.

[11]  K. Madhukar,et al.  Development and analysis of cellulose nanocomposite films with in situ generated silver nanoparticles using tamarind nut powder as a reducing agent , 2019, International Journal of Polymer Analysis and Characterization.

[12]  R. A. Ilyas,et al.  Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. , 2018, Carbohydrate polymers.

[13]  R. A. Ilyas,et al.  Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). , 2018, Carbohydrate polymers.

[14]  M. Jawaid,et al.  Preparation and Properties of Cellulose/Tamarind Nut Powder Green Composites , 2018 .

[15]  S. Siengchin,et al.  Green Synthesis of Copper-Reinforced Cellulose Nanocomposites for Packaging Applications , 2018 .

[16]  M. Iqbal,et al.  Cu nanoparticles synthesis using biological molecule of P. granatum seeds extract as reducing and capping agent: Growth mechanism and photo-catalytic activity. , 2018, International journal of biological macromolecules.

[17]  Senthil Muthu Kumar Thiagamani,et al.  Utilization of chemically treated municipal solid waste (spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications. , 2017, Waste management.

[18]  R. A. Ilyas,et al.  Effect of Delignification on the Physical, Thermal, Chemical, and Structural Properties of Sugar Palm Fibre , 2017 .

[19]  M. L. Sanyang,et al.  Nanocrystalline Cellulose as Reinforcement for Polymeric Matrix Nanocomposites and its Potential Applications: A Review , 2017 .

[20]  T. Feng,et al.  Preparation and properties of low-cost cotton nanocomposite fabrics with in situ-generated copper nanoparticles by simple hydrothermal method , 2017 .

[21]  N. I. Zahari,et al.  Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties. , 2017, International journal of biological macromolecules.

[22]  Huafeng Tian,et al.  Development and analysis of biodegradable poly(propylene carbonate)/tamarind nut powder composite films , 2017 .

[23]  M. Jawaid,et al.  Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. , 2017, International journal of biological macromolecules.

[24]  V. Sadanand,et al.  Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties. , 2016, Carbohydrate polymers.

[25]  Ruchira Chakraborty,et al.  Mechanism of antibacterial activity of copper nanoparticles , 2014, Nanotechnology.

[26]  J. Manjanna,et al.  Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[27]  Salih Mohammed Salih,et al.  Fourier Transform - Materials Analysis , 2012 .

[28]  S. Sapuan,et al.  Physical and Chemical Properties of Different Morphological Parts of Sugar Palm Fibres , 2012 .

[29]  S. K. Saw,et al.  THERMO MECHANICAL PROPERTIES OF JUTE/BAGASSE HYBRID FIBRE REINFORCED EPOXY THERMOSET COMPOSITES , 2009 .

[30]  Lina Zhang,et al.  Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. , 2009, Biomacromolecules.

[31]  Haiping Yang,et al.  Characteristics of hemicellulose, cellulose and lignin pyrolysis , 2007 .

[32]  D. Fengel,et al.  Possibilities and limits of the FTIR spectroscopy for the characterization of cellulose. Pt.1: Comparison of various cellulose fibres and bacteria cellulose , 1991 .

[33]  G. Duxbury Fourier transform infrared spectroscopy , 1978, Nature.

[34]  L. Segal',et al.  An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer , 1959 .