A graph with fractional revival

Abstract An example of a graph that admits balanced fractional revival between antipodes is presented. It is obtained by establishing the correspondence between the quantum walk on a hypercube where the opposite vertices across the diagonals of each face are connected and, the coherent transport of single excitations in the extension of the Krawtchouk spin chain with next-to-nearest neighbour interactions.

[1]  Alastair Kay,et al.  Perfect, Efficent, State Transfer and its Application as a Constructive Tool , 2009, 0903.4274.

[2]  Igor Jex,et al.  Recurrence properties of unbiased coined quantum walks on infinite d -dimensional lattices , 2008, 0805.1322.

[3]  F. Grünbaum Block Tridiagonal Matrices and a Beefed-up Version of the Ehrenfest Urn Model , 2009 .

[4]  Dennis Stanton,et al.  Orthogonal Polynomials and Combinatorics , 2001 .

[5]  E. Bannai Orthogonal Polynomials in Coding Theory and Algebraic Combinatorics , 1990 .

[6]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[7]  Roberto Osellame,et al.  Experimental perfect state transfer of an entangled photonic qubit , 2016, Nature Communications.

[8]  Luc Vinet,et al.  How to construct spin chains with perfect state transfer , 2011, 1110.6474.

[9]  Leonardo Banchi,et al.  Perfect wave-packet splitting and reconstruction in a one-dimensional lattice , 2015, 1502.03061.

[10]  Christino Tamon,et al.  Perfect State Transfer in Quantum Walks on Graphs , 2011 .

[11]  Dennis Stanton,et al.  Zeros of generalized Krawtchouk polynomials , 1990 .

[12]  Matthias Christandl,et al.  Mirror inversion of quantum states in linear registers. , 2004, Physical review letters.

[13]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .

[14]  Luc Vinet,et al.  Quantum spin chains with fractional revival , 2015, 1507.05919.

[15]  L. Vinet,et al.  Birth and death processes and quantum spin chains , 2012, 1205.4689.

[16]  R. W. Robinett Quantum wave packet revivals , 2004 .

[17]  I Jex,et al.  Recurrence and Pólya number of quantum walks. , 2007, Physical review letters.

[18]  Stefan Nolte,et al.  Coherent quantum transport in photonic lattices , 2012, 1207.6080.

[19]  Chris D. Godsil,et al.  State transfer on graphs , 2011, Discret. Math..

[20]  Sougato Bose,et al.  Quantum communication through spin chain dynamics: an introductory overview , 2007, 0802.1224.

[21]  Edward Farhi,et al.  An Example of the Difference Between Quantum and Classical Random Walks , 2002, Quantum Inf. Process..

[22]  I. Jex,et al.  Quantum State Transfer and Network Engineering , 2013 .

[23]  Matthias Christandl,et al.  Analytic next-to-nearest-neighbor X X models with perfect state transfer and fractional revival , 2016, 1607.02639.

[24]  A. H. Werner,et al.  Recurrence for Discrete Time Unitary Evolutions , 2012, 1202.3903.

[25]  Matthias Christandl,et al.  Perfect Transfer of Arbitrary States in Quantum Spin Networks , 2005 .

[26]  L. Vinet,et al.  Coherent Transport in Photonic Lattices: A Survey of Recent Analytic Results , 2017, 1705.04841.

[27]  C. M. Chandrashekar Fractional recurrence in discrete-time quantum walk , 2010 .