Microscale Glass-Blown Three-Dimensional Spherical Shell Resonators

This paper introduces a new paradigm for design and batch fabrication of isotropic 3-D spherical shell resonators. The approach uses pressure and surface tension driven plastic deformation (glassblowing) on a wafer scale as a mechanism for creating inherently smooth and symmetric 3-D resonant structures. The feasibility of the new approach was demonstrated by fabrication and characterization of Pyrex glass spherical shell resonators with millimeter-scale diameter and average thickness of 10 μm . Metal electrodes cofabricated along with the shell were used to actuate the two dynamically balanced four- and six-node vibratory modes. For 1-MHz glass-blown resonators, the relative frequency mismatch Δf/f between the two degenerate four-node wineglass modes was measured as 0.63% without any trimming or tuning. For the higher order six-node wineglass modes, the relative frequency mismatch was only 0.2%, demonstrating the potential for precision manufacturing. The intrinsic manufacturing symmetry enabled by the technology may inspire new classes of high-performance 3-D MEMS for communication and inertial navigation.

[1]  Kensall D. Wise,et al.  Solid-state processes to produce hemispherical components for inertial fusion targets , 1981 .

[2]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[3]  J. Radok,et al.  The theory of thin shells , 1959 .

[4]  K. Federhofer,et al.  Eigenschwingungen der Kegelschale , 1938 .

[5]  Cam Nguyen,et al.  Micromechanical Signal Processors , 1994 .

[6]  Ya. I. Belyi,et al.  Calculation of the surface tension of molten borosilicate glasses , 1996 .

[7]  P. Gennes,et al.  Capillarity and Wetting Phenomena , 2004 .

[8]  Andrei M. Shkel,et al.  3-D MICROMACHINED SPHERICAL SHELL RESONATORS WITH INTEGRATED ELECTROMAGNETIC AND ELECTROSTATIC TRANSDUCERS , 2010 .

[9]  M. Roukes,et al.  Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals , 1996 .

[10]  M. Lipson,et al.  Silicon-waveguide-coupled high-Q chalcogenide microspheres. , 2009, Optics express.

[11]  A. Havers Asymptotische Biegetheorie der unbelasteten Kugelschale , 1935 .

[12]  C. S. Lam,et al.  A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry , 2008, 2008 IEEE Ultrasonics Symposium.

[13]  A. Shkel,et al.  Glass Blowing on a Wafer Level , 2007, Journal of Microelectromechanical Systems.

[14]  Aaron Partridge,et al.  Silicon MEMS Oscillators for High-Speed Digital Systems , 2010, IEEE Micro.

[15]  B. Widom Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2003 .

[16]  W. Marsden I and J , 2012 .

[17]  J. Schroers,et al.  Blow Molding of Bulk Metallic Glass , 2007 .

[18]  Andrei M. Shkel,et al.  Glass-blown spherical microcells for chip-scale atomic devices , 2008 .

[19]  Frithiof I. Niordson,et al.  Free vibrations of thin elastic spherical shells , 1984 .

[20]  V. Braginsky,et al.  Systems with Small Dissipation , 1986 .

[21]  Wan-Thai Hsu,et al.  Recent Progress in Silicon MEMS Oscillators , 2008 .

[22]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[23]  A. Van der Neut,et al.  De elastische stabiliteit van den dunwandigen bol , 1932 .

[24]  X S Yao,et al.  Microtorus: a high-finesse microcavity with whispering-gallery modes. , 2001, Optics letters.

[25]  F. Ayazi,et al.  High-order composite bulk acoustic resonators , 2007, 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS).

[26]  Noriyoshi Chubachi,et al.  Chemical Isotropic Etching of Single-Crystal Silicon for Acoustic Lens of Scanning Acoustic Microscope , 1993 .

[27]  C. Nguyen,et al.  MEMS technology for timing and frequency control , 2005, Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005..

[28]  M. Madou Fundamentals of microfabrication , 1997 .