Numerical Analysis of Nanotube-Based NEMS Devices—Part I: Electrostatic Charge Distribution on Multiwalled Nanotubes
暂无分享,去创建一个
[1] Lou,et al. Fullerene nanotubes in electric fields. , 1995, Physical review. B, Condensed matter.
[2] K.R. Demarest,et al. Engineering Electromagnetics , 1997, IEEE Electrical Insulation Magazine.
[3] Charles M. Lieber,et al. Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.
[4] Seiji Akita,et al. Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope , 2001 .
[5] S. Rotkin,et al. Nanotube devices: A microscopic model , 2002 .
[6] S. Nayak,et al. Charge distribution and stability of charged carbon nanotubes. , 2002, Physical Review Letters.
[7] N. Aluru,et al. ATOMISTIC CAPACITANCE OF A NANOTUBE ELECTROMECHANICAL DEVICE , 2002 .
[8] N. Aluru,et al. Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .
[9] Axel Scherer,et al. Nanowire-Based Very-High-Frequency Electromechanical Resonator , 2003 .
[10] J. Kinaret,et al. A carbon-nanotube-based nanorelay , 2002, cond-mat/0208427.
[11] A. Zangwill,et al. Electrostatics of conducting nanocylinders , 2003 .
[12] A. M. Fennimore,et al. Rotational actuators based on carbon nanotubes , 2003, Nature.
[13] Horacio Dante Espinosa,et al. Feedback controlled nanocantilever device , 2004 .
[14] Kirk J. Ziegler,et al. Bistable nanoelectromechanical devices , 2004 .
[15] Horacio D. Espinosa,et al. Numerical Analysis of Nanotube Based NEMS Devices — Part II: Role of Finite Kinematics, Stretching and Charge Concentrations , 2005 .