A model and procedure for competitive bidding under resource constraints

Accurate cost estimates for an incoming order are critical in formulating the optimal bidding strategy. When a firm is approaching its resource capacity, adding a new job into the system in the short-run may cause violations of the due date requirements, thus penalty costs arise. Failure to obtain an accurate estimate of the penalty costs often leads to sub-optimal bids. In this paper, we propose a two-stage model and procedure for optimal bidding under explicit resource constraints. The computational results indicate that our model and solution approach is both effective and efficient for the proposed problem.

[1]  Peter Brucker,et al.  Scheduling Algorithms , 1995 .

[2]  L. Friedman A Competitive-Bidding Strategy , 1956 .

[3]  Paul R. Milgrom,et al.  The value of information in a sealed-bid auction , 1982 .

[4]  Erik Demeulemeester,et al.  Resource-constrained project scheduling: A survey of recent developments , 1998, Comput. Oper. Res..

[5]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[6]  Pertti Näykki On Optimal Bidding Strategies , 1976 .

[7]  R. Storer,et al.  A problem space algorithm for single machine weighted tardiness problems , 2003 .

[8]  James E. Kelley,et al.  Critical-Path Planning and Scheduling: Mathematical Basis , 1961 .

[9]  Patrizia Beraldi,et al.  Optimal capacity allocation in multi-auction electricity markets under uncertainty , 2005, Comput. Oper. Res..

[10]  Jan Węglarz On Certain Models of Resource Allocation Problems , 1978 .

[11]  K. Bontridder,et al.  Minimizing Total Weighted Tardiness in a Generalized Job Shop , 2005, J. Sched..

[12]  Joel I. Singer Double Auctions Across a Constrained Transmission Line , 2002, Oper. Res..

[13]  R. Słowiński Multiobjective network scheduling with efficient use of renewable and nonrenewable resources , 1981 .

[14]  Arno Sprecher,et al.  Resource-Constrained Project Scheduling: Exact Methods for the Multi-Mode Case , 1994 .

[15]  P. Brucker,et al.  Tabu Search Algorithms and Lower Bounds for the Resource-Constrained Project Scheduling Problem , 1999 .

[16]  Chris N. Potts,et al.  Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem , 1998, INFORMS J. Comput..

[17]  Martin Skitmore,et al.  A Multivariate Approach to Construction Contract Bidding Mark-up Strategies , 1994 .

[18]  E. Lawler A “Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize Total Tardiness , 1977 .

[19]  Professor Dr. Klaus Neumann,et al.  Project Scheduling with Time Windows and Scarce Resources , 2003, Springer Berlin Heidelberg.

[20]  Thomas E. Morton,et al.  Resource-constrained multi-project scheduling with tardy costs: Comparing myopic, bottleneck, and resource pricing heuristics , 1993 .

[21]  Jérémie Gallien,et al.  A Smart Market for Industrial Procurement with Capacity Constraints , 2005, Manag. Sci..

[22]  Chris N. Potts,et al.  Single Machine Tardiness Sequencing Heuristics , 1991 .

[23]  Peter Brucker,et al.  Scheduling and constraint propagation , 2002, Discret. Appl. Math..

[24]  Rainer Kolisch,et al.  Efficient priority rules for the resource-constrained project scheduling problem , 1996 .

[25]  B. H. P. Rivett,et al.  Competitive Bidding|[ast]| , 1959 .

[26]  Michael Pinedo,et al.  A shifting bottleneck heuristic for minimizing the total weighted tardiness in a job shop , 1999 .

[27]  Distributions in Competitive Bidding , 1991 .

[28]  Chris N. Potts,et al.  An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem , 2002, INFORMS J. Comput..

[29]  V. Jorge Leon,et al.  Strength and adaptability of problem-space based neighborhoods for resource-constrained scheduling , 1995 .

[30]  Peter Brucker,et al.  A linear programming and constraint propagation-based lower bound for the RCPSP , 2000, Eur. J. Oper. Res..

[31]  Michael H. Rothkopf,et al.  On Multiplicative Bidding Strategies , 1980, Oper. Res..

[32]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[33]  D. Malcolm,et al.  Application of a Technique for Research and Development Program Evaluation , 1959 .

[34]  Klaus Neumann,et al.  Order-based neighborhoods for project scheduling with nonregular objective functions , 2003, Eur. J. Oper. Res..

[35]  Ramón Alvarez-Valdés Olaguíbel,et al.  Chapter 5 – HEURISTIC ALGORITHMS FOR RESOURCE-CONSTRAINED PROJECT SCHEDULING: A REVIEW AND AN EMPIRICAL ANALYSIS , 1989 .

[36]  Christoph Schwindt,et al.  Generation of Resource-Constrained Project Scheduling Problems with Minimal and Maximal Time Lags , 1998 .

[37]  Robert M. Stark,et al.  Some Multi-Contract Decision-Theoretic Competitive Bidding Models , 1971, Oper. Res..

[38]  Chris N. Potts,et al.  A decomposition algorithm for the single machine total tardiness problem , 1982, Oper. Res. Lett..

[39]  Mauro Dell'Amico,et al.  Applying tabu search to the job-shop scheduling problem , 1993, Ann. Oper. Res..

[40]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[41]  Fred W. Glover,et al.  Applying tabu search with influential diversification to multiprocessor scheduling , 1994, Comput. Oper. Res..