Thermophysical Property Measurements: The Journey from Accuracy to Fitness for Purpose

Until the 1960s much of the experimental work on the thermophysical properties of fluids was devoted to the development of methods for the measurement of the properties of simple fluids under moderate temperatures and pressures. By the end of the 1960s a few methods had emerged that had both a rigorous mathematical description of the experimental method and technical innovation to render measurements precise enough to rigorously test theories of fluids for both gas and liquid phases. These studies demonstrated that, for the gas phase at least, the theories were exceedingly reliable and led to physical insight into simple molecular interactions. The thesis of this paper is, after those early successes, there has been a divergence of experimental effort from the earlier thrust and, in the future, there needs to be focus on in situ measurement of properties for process fluids. These arguments are based upon the balance between the uncertainty of the results and their utility and economic value as well as upon technical developments, which have provided reliable and robust sensors of properties. The benefits accrued from accurate measurements on a few materials to validate predictions of the physical properties, for a much wider set of mixtures over a wide range of conditions, are much less relevant for most engineering purposes. However, there remain some special areas of science where high accuracy measurements are an important goal.

[1]  Edward A. Mason,et al.  Heat Conductivity of Polyatomic and Polar Gases and Gas Mixtures , 1965 .

[2]  J. Kestin,et al.  Viscosity of the Binary Gaseous Mixture Neon‐Krypton , 1972 .

[3]  J. Kestin,et al.  The viscosity of CH4, CF4 and SF6 over a range of temperatures , 1973 .

[4]  Kenichi Fujii,et al.  ERRATUM: Present state of the solid and liquid density standards , 2004 .

[5]  J. A. Barker,et al.  Liquid argon: Monte carlo and molecular dynamics calculations , 1971 .

[6]  J. Rowlinson The critical point: A historical introduction to the modern theory of critical phenomena , 1997 .

[7]  Law,et al.  Light-scattering observations of long-range correlations in a nonequilibrium liquid. , 1988, Physical review letters.

[8]  John Atkinson,et al.  Thermal Conductivity of Molten Lead-Free Solders , 2006 .

[9]  J. Clark An electronic analytical balance. , 1947, The Review of scientific instruments.

[10]  F. Schmidt Cindas data series on material properties: Volume I-1: Transport Properties of Fluids—Thermal conductivity, viscosity and diffusion Coefficients Authored by J. Kestin and W. A. Wakeham $98.00 344 pages , 1989 .

[11]  P. Liley,et al.  Thermal Conductivity of the Elements , 1972 .

[12]  M. Moldover,et al.  Acoustic thermometry: new results from 273 K to 77 K and progress towards 4 K , 2006 .

[13]  W. Wakeham,et al.  Validation of a Vibrating-Wire Viscometer: Measurements in the Range of 0.5 to 135 mPa·s , 2005 .

[14]  J. Kestin,et al.  The viscosity of gaseous mixtures containing krypton , 1999 .

[15]  Weissberger Physical methods of chemistry , 1971 .

[16]  G. L. Gardner,et al.  Molten salts: Volume 4, part 2, chlorides and mixtures—electrical conductance, density, viscosity, and surface tension data , 1974 .

[17]  Joseph Kestin,et al.  Viscosity, Thermal Conductivity, and Diffusion Coefficient of Ar–Ne and Ar–Kr Gaseous Mixtures in the Temperature Range 25–700°C , 1970 .

[18]  W. A. Wakeham,et al.  Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids , 1988 .

[19]  E. Kiran,et al.  High-pressure viscosity and density of n-alkanes , 1992 .

[20]  A. Merlone,et al.  Acoustic measurements of the thermodynamic temperature between the triple point of mercury and 380 K , 2004 .

[21]  Y. S. Touloukian,et al.  Physical Properties of Rocks and Minerals , 1981 .

[22]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[23]  K. Fujii,et al.  Accurate density measurements of reference liquids by a magnetic suspension balance , 2004 .

[24]  A. Nagashima,et al.  Measurement of the viscosity of sea water under high pressure , 1984 .

[25]  W. Hall,et al.  The Thermal Conductivities of Mercury, Sodium, and Sodium Amalgams in the Liquid State , 1938 .

[26]  M. Cannon Viscosity Measurement. Master Viscometers , 1944 .

[27]  W. Wagner,et al.  Entwicklung und Aufbau einer Dichtemeßanlage zur Messung der Siede- und Taudichten reiner fluider Stoffe auf der gesamten Phasengrenzkurve , 1984 .

[28]  Carlos Hidrovo,et al.  Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement , 2001 .

[29]  William A. Wakeham,et al.  Absolute determination of the thermal conductivity of the noble gases and two of their binary mixtures as a function of density , 1981 .

[30]  E. Vogel,et al.  The initial density dependence of the viscosity of organic vapours: Cyclohexane and neopentane , 1988 .

[31]  L. HuberM,et al.  天然ガス中の少量成分流体の粘度相関 n-オクタン,n-ノナン及びn-デカン | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2004 .

[32]  W. Wakeham,et al.  Transport properties of diatomic gases , 1986 .

[33]  M. Dix,et al.  A vibrating-wire densimeter for measurements in fluids at high pressures , 1991 .

[34]  W. Wakeham,et al.  The viscosity of five liquid hydrocarbons at pressures up to 250 MPa , 1992 .

[35]  J. Kestin,et al.  Viscosity of the Binary Gaseous Mixture Helium‐Nitrogen , 1972 .

[36]  Edward A. Mason,et al.  Heat Conductivity of Polyatomic and Polar Gases , 1962 .

[37]  J. Kestin,et al.  Transport properties of fluids : thermal conductivity, viscosity, and diffusion coefficient , 1988 .

[38]  A. Goodwin,et al.  Measurement of the Viscosity and Density of Two Reference Fluids, with Nominal Viscosities at T = 298 K and p = 0.1 MPa of (16 and 29) mPa·s, at Temperatures between (298 and 393) K and Pressures below 55 MPa , 2005 .

[39]  G. M. Watson,et al.  The Compressibility of Liquid n-Octane , 1942 .

[40]  H. Güntherodt,et al.  Lorenz number and thermal conductivity of liquid and solid mercury , 1972 .

[41]  J. R. Coe,et al.  Absolute viscosity of water at 20-degrees-C , 1952 .

[42]  W. Wakeham,et al.  The Viscosity and Density of n-Dodecane and n-Octadecane at Pressures up to 200 MPa and Temperatures up to 473 K , 2004 .

[43]  J. D. Isdale,et al.  Transport properties of nonelectrolyte liquid mixtures—III. Viscosity coefficients for n-octane, n-dodecane, and equimolar mixtures of n-octane + n-dodecane and n-hexane + n-dodecane from 25 to 100°C at pressures up to the freezing pressure or 500 MPa , 1981 .

[44]  J. Kestin,et al.  Reference values of the viscosity of twelve gases at 25°C , 1971 .

[45]  W. Wakeham,et al.  The Critical Enhancements , 1996 .

[46]  Y. Plevachuk,et al.  A modified steady state apparatus for thermal conductivity measurements of liquid metals and semiconductors , 2005 .

[47]  G. Maitland,et al.  The forces between simple molecules , 1973 .

[48]  Marc J. Assael,et al.  A round robin project on the transport properties of R134a , 1995 .

[49]  E. Vogel,et al.  Temperature dependence and initial density dependence of the viscosity of sulphur hexafluoride , 1989 .

[50]  J. D. Isdale,et al.  (P,ϱ,T) OF SOME PURE N‐ALKANES AND BINARY MIXTURES OF N‐ALKANES IN THE RANGE 298 TO 373 K AND 0.1 TO 500 MPA , 1982 .

[51]  S. Garg,et al.  Heat capacities and densities of liquid n-octane, n-nonane, n-decane, and n-hexadecane at temperatures from 318.15 K to 373.15 K and at pressures up to 10 MPa , 1991 .

[52]  C. Domb,et al.  The Critical Point: A Historical Introduction To The Modern Theory Of Critical Phenomena , 1996 .

[53]  A. Kumagai,et al.  Viscosity of saturated liquid fluorocarbon refrigerants from 273 to 353 K , 1991 .

[54]  J. Parson,et al.  Intermolecular Potentials from Crossed‐Beam Differential Elastic Scattering Measurements. IV. Ar+Ar , 1972 .

[55]  William A. Wakeham,et al.  Measurement of the Transport Properties of Fluids , 1991 .

[56]  W. Wakeham,et al.  Prediction of the thermal conductivity of fluid mixtures over wide ranges of temperature and pressure , 1991 .

[57]  Michael E. Fisher,et al.  Theory of Critical-Point Scattering and Correlations. I. The Ising Model , 1967 .

[58]  W. Wagner,et al.  Measurement and correlation of the equilibrium liquid and vapour densities and the vapour pressure along the coexistence curve of methane , 1986 .

[59]  William A. Wakeham,et al.  Validation of an accurate vibrating-wire densimeter: Density and viscosity of liquids over wide ranges of temperature and pressure , 1996 .

[60]  J. M. Parson,et al.  Intermolecular Potentials from Crossed Beam Differential Elastic Scattering Measurements. III. He+He and Ne+Ne , 1970 .

[61]  W. A. Wakeham,et al.  A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part I: Instrument’s Description , 2006 .

[62]  William A. Wakeham,et al.  Absolute determination of the thermal conductivity of the noble gases at room temperature up to 35 MPa , 1980 .

[63]  A. Goodwin,et al.  Measurement of the Thermodynamic Properties of Single Phases , 2003 .

[64]  Repeatability and Refinement of a Transient Hot-Wire Instrument for Measuring the Thermal Conductivity of High-Temperature Melts , 2006 .

[65]  W. Wagner,et al.  Entwicklung und Aufbau einer Dichtemeßanlage zur Messung der Siede‐ und Taudichten reiner fluider Stoffe auf der gesamten Phasengrenzkurve , 1985 .

[66]  W. Wakeham,et al.  Thermal Conductivity of Liquid Tin and Indium , 2001 .

[67]  W. G. S. Scaife,et al.  Dielectric Permittivity and pvT data of some n-alkanes , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[68]  H. Helmholtz,et al.  Mathematical and Physical Papers , 1885, Nature.

[69]  J. Kestin,et al.  Viscosity of the Noble Gases in the Temperature Range 25–700°C , 1972 .

[70]  William A. Wakeham,et al.  The viscosity of liquid water at pressures up to 32 MPa , 1993 .

[71]  W Wagner,et al.  Densimeters for very accurate density measurements of fluids over large ranges of temperature, pressure, and density , 2004 .

[72]  J. Kestin,et al.  An extended law of corresponding states for the equilibrium and transport properties of the noble gases , 1972 .

[73]  Brian J Monaghan,et al.  Thermal conductivities of molten metals: Part 1 Pure metals , 1996 .

[74]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[75]  Benedick Montreal Protocol on Substances that Deplete the Ozone Layer , 1996 .

[76]  W. Wakeham,et al.  Density and Viscosity Measurements of 1,1,1,2-Tetrafluoroethane (HFC-134a) from 199 K to 298 K and up to 100 MPa , 1996 .

[77]  W. Wakeham Transport properties: from fundamental theory to industrial practice , 1996 .

[78]  J. Sengers,et al.  The thermal conductivity of carbon dioxide in the critical region: I. The thermal conductivity apparatus , 1962 .

[79]  A. Laesecke,et al.  Measurements of the viscosities of saturated and compressed liquid 1,1,1,2-tetrafluoroethane (R134a), 2,2-dichloro-1,1,1-trifluoroethane (R123) and 1,1-dichloro-1-fluoroemane (R141b) , 1993 .

[80]  A. Grosse An empirical relationship between the electrical conductivity of mercury and temperature, over its entire liquid range, also its thermal conductivity and the latter's regular behaviour☆☆☆ , 1966 .

[81]  W. A. Wakeham,et al.  Absolute measurements of the thermal conductivity of liquids at pressures up to 500 MPa , 1981 .

[82]  J. R. Coe,et al.  Viscosity of Water , 1944 .

[83]  W. Wagner,et al.  Measurement and correlation of the (p, ρ,T) relation of ethylene I. The homogeneous gaseous and liquid regions in the temperature range from 105 K to 340 K at pressures up to 12 MPa☆ , 1996 .

[84]  William A. Wakeham,et al.  Prediction of the viscosity of fluid mixtures over wide ranges of temperature and pressure , 1989 .

[85]  W. Wakeham,et al.  Practical, accurate expressions for the thermal conductivity of atom-diatom gas mixtures , 1993 .

[86]  Roland Span,et al.  Multiparameter Equations of State: An Accurate Source of Thermodynamic Property Data , 2000 .

[87]  William A. Wakeham,et al.  Transport Properties of Fluids: Their Correlation, Prediction and Estimation , 2005 .

[88]  G. Maitland,et al.  The intermolecular pair potential of argon , 1971 .

[89]  A. Leipertz,et al.  Accurate Determination of Liquid Viscosity and Surface Tension Using Surface Light Scattering (SLS): Toluene Under Saturation Conditions Between 260 and 380 K , 2003 .

[90]  J. Kestin,et al.  Improved corresponding states principle for the noble gases , 1983 .

[91]  H. Burstyn,et al.  Decay rate of critical concentration fluctuations in a binary liquid , 1982 .

[92]  J. Kestin,et al.  Thermal conductivity of some mixtures of monatomic gases at room temperature and at pressures up to 15 MPa , 1979 .

[93]  U. Grigull,et al.  Messung der Temperatur- und der Wärmeleitfähigkeit von Kohlendioxid im kritischen Gebiet mittels holographischer Interferometrie , 1978 .

[94]  K. Nagata,et al.  Deviation from Wiedemann–Franz Law for the Thermal Conductivity of Liquid Tin and Lead at Elevated Temperature , 2003 .

[95]  M. Assael,et al.  Thermophysical Properties of Fluids: An Introduction to Their Prediction , 1996 .

[96]  R. Dipippo,et al.  A high-temperature oscillating-disk viscometer , 1966 .

[97]  J. Kestin,et al.  Viscosity of multicomponent mixtures of four complex gases , 1976 .

[98]  William A. Wakeham,et al.  Standard Reference Data for the Thermal Conductivity of Liquids , 1986 .

[99]  William A. Wakeham,et al.  Intermolecular Forces: Their Origin and Determination , 1983 .

[100]  K. N. Marsh,et al.  Recommended reference materials for the realization of physicochemical properties , 1987 .

[101]  W A Wakeham,et al.  A transient hot-wire cell for thermal conductivity measurements over a wide temperature range , 1982 .

[102]  Marc J. Assael,et al.  Status of the round robin on the transport properties of R134a , 1995 .