Uncertainty Quantification of System Model Parameters with Component Level and Sub-System Level Tests

[1]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[2]  Matthew F. Barone,et al.  Measures of agreement between computation and experiment: Validation metrics , 2004, J. Comput. Phys..

[3]  Sankaran Mahadevan,et al.  Assessing the Reliability of Computational Models under Uncertainty , 2013 .

[4]  You Ling Uncertainty quantification in time-dependent reliability analysis , 2013 .

[5]  Sankaran Mahadevan,et al.  A non-parametric method to determine basic probability assignment for classification problems , 2014, Applied Intelligence.

[6]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[7]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  Sankaran Mahadevan,et al.  Comprehensive Framework for Integration of Calibration, Verification and Validation , 2012 .

[9]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[10]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[11]  Sankaran Mahadevan,et al.  Validation and error estimation of computational models , 2006, Reliab. Eng. Syst. Saf..

[12]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[13]  Paul M. Weaver,et al.  53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 23-26 Apr. 2012, Honolulu, Hawaii , 2012 .

[14]  Thomas L. Paez,et al.  Sandia National Laboratories Validation Workshop: Structural dynamics application☆ , 2008 .

[15]  Sankaran Mahadevan,et al.  Optimal Selection of Calibration and Validation Test Samples Under Uncertainty , 2014 .

[16]  Sankaran Mahadevan,et al.  Global Sensitivity Analysis for System Response Prediction Using Auxiliary Variable Method , 2015 .

[17]  Sankaran Mahadevan,et al.  Robust Test Resource Allocation using Global Sensitivity Analysis , 2016 .

[18]  Zhen Hu,et al.  Global sensitivity analysis-enhanced surrogate (GSAS) modeling for reliability analysis , 2016 .

[19]  Sankaran Mahadevan,et al.  Relative contributions of aleatory and epistemic uncertainty sources in time series prediction , 2016 .

[20]  Shuangzhe Liu,et al.  Global Sensitivity Analysis: The Primer by Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola , 2008 .

[21]  Sankaran Mahadevan,et al.  Probabilistic Integration of Validation and Calibration Results for Prediction Level Uncertainty Quantification: Application to Structural Dynamics , 2013 .

[22]  A. O'Hagan,et al.  Fractional Bayes factors for model comparison , 1995 .

[23]  D. Massart,et al.  The Mahalanobis distance , 2000 .

[24]  Sankaran Mahadevan,et al.  Validation of reliability computational models using Bayes networks , 2005, Reliab. Eng. Syst. Saf..

[25]  Sung-Hyuk Cha Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions , 2007 .

[26]  Laura Painton Swiler,et al.  Calibration, validation, and sensitivity analysis: What's what , 2006, Reliab. Eng. Syst. Saf..

[27]  Ramesh Rebba,et al.  Computational methods for model reliability assessment , 2008, Reliab. Eng. Syst. Saf..

[28]  Kevin S. Van Horn,et al.  Constructing a logic of plausible inference: a guide to Cox's theorem , 2003, Int. J. Approx. Reason..