Effects of site on fibre, kraft pulp and handsheet properties of Eucalyptus globulus

Abstract• Eight-year old trees from two Eucalyptus globulus Labill. clones planted across three different sites in Tasmania, Australia, were sampled for wood and kraft pulp/handsheet properties.• Site had a significant effect on all measured properties. Compared with the poor site (Parkham) the wood from the good site (West Ridgley) had on average 11 % lower wood density. The poor site had also greater microfibril angles, shorter fibres at lower pulp yields.• The handsheets produced with pulp from the poor site resulted in comparatively higher bulkiness, lower burst, lower tear and tensile indices, lower zero span tensile strength, but higher opacity, higher light scattering and higher surface roughness. Significant height effects were found with all wood properties, and also with tear index, zero span tensile strength and opacity.• Discriminant analysis showed that for 76 out of 100 handsheets the raw material source, i.e. growth site, could be predicted correctly using a set of handsheet properties with tear index and bulk index being most prominent.• This is unique evidence that site conditions are strongly reflected in handsheet properties produced from Eucalyptus pulp.Résumé• Nous avons échantillonné des arbres de huit ans de deux clones d’Eucalyptus globulus Labill., sur trois sites différents de Tasmanie en Australie, pour analyser les propriétés du bois et les propriétés papetières.• Le site a un effet significatif sur toutes les propriétés. Sur le meilleur site (West Ridgley), le bois a une densité inférieure de 11 % à celle obtenue sur le site le plus pauvre. Ce dernier (Parkham) présente un angle des microfibrilles plus important, des fibres plus courtes et un rendement en pâte plus faible.• Les feuilles fabriquées avec de la pâte du site pauvre conduisent à une main plus importante, un éclatement, une déchirure et des indices de traction moindres, une résistance à la traction à la mâchoire jointive plus faible, mais une opacité plus forte, une diffusion à la lumière et une rugosité de surface plus importantes.• Des effets significatifs de la hauteur ont été mis en évidence pour toutes les propriétés du bois mais aussi pour l’index de déchirement, pour la résistance à la traction à la mâchoire jointive et pour l’opacité. L’analyse discriminante a montré que pour 76 feuilles sur 100, l’origine de la matière première, c’est-à-dire le site de production, pouvait être prédite correctement en utilisant un jeu de propriétés des feuilles, l’indice de déchirement et la main étant les plus évidents.• Cela montre de manière originale que les conditions stationnelles sont reflétées dans les propriétés de feuilles de papiers produites avec de la pâte mécanique.

[1]  B. Potts,et al.  Patterns of longitudinal within-tree variation in pulpwood and solidwood traits differ among Eucalyptus globulus genotypes , 2007, Annals of Forest Science.

[2]  M. Almeida,et al.  INFLUENCE OF PROVENANCE, SUBSPECIES, AND SITE ON WOOD DENSITY IN EUCALYPTUS GLOBULUS LABILL. , 2007 .

[3]  C. P. Neto,et al.  Assessment of potential approaches to improve Eucalyptus globulus kraft pulping yield , 2007 .

[4]  C. Beadle,et al.  The effect of growth rate and irrigation on the basic density and kraft pulp yield of Eucalyptus globulus and E. nitens feature , 2006 .

[5]  Y. Çöpür,et al.  The prediction of pulp yield using selected fiber properties , 2005 .

[6]  N. Durán,et al.  Influences of surface chemical composition on the mechanical properties of pulp as investigated by SEM, XPS and multivariate data analysis , 2005 .

[7]  Jerome K. Vanclay,et al.  The value of good sites and good genotypes : an analysis of Eucalyptus dunnii plantations in NSW , 2004 .

[8]  J. Staden,et al.  The relationship between vegetation management and the wood and pulping properties of a Eucalyptus hybrid clone , 2003 .

[9]  G. Downes,et al.  Estimation of 'Eucalyptus nitens' Wood Properties by Near Infrared Spectroscopy , 2003 .

[10]  R. Wimmer,et al.  CLONAL AND SITE VARIATION OF VESSELS IN 7-YEAR-OLD EUCALYPTUS GLOBULUS , 2003 .

[11]  Ahmed Koubaa,et al.  Selection for Both Growth and Wood Properties in Hybrid Poplar Clones , 2003, Forest Science.

[12]  Robert Evans,et al.  Direct Effects of Wood Characteristics on Pulp and Handsheet Properties of Eucalyptus globulus , 2002 .

[13]  H. Pereira,et al.  Variation of pulpwood quality with provenances and site in Eucalyptus globulus , 2002 .

[14]  L. Schimleck,et al.  Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. III. Predicted pulp yield using Near Infrared Reflectance Analysis , 2001, Wood Science and Technology.

[15]  H. Vermaas Primary processing of eucalypts and factors affecting it , 2000 .

[16]  M. Riddell,et al.  Wood and kraft fibre property variation within and among nine trees of Eucalyptus nitens , 2000 .

[17]  H. Pereira,et al.  VARIABILITY OF FIBRE LENGTH IN WOOD AND BARK IN EUCALYPTUS GLOBULUS , 2000 .

[18]  M. Battaglia,et al.  Use of a simple plantation productivity model to study the profitability of irrigated Eucalyptus globulus , 1999 .

[19]  F. Hingston,et al.  Application of the process-based model BIOMASS to Eucalyptus globulus ssp. globulus plantations on ex-farmland in south western Australia: II. Stemwood production and seasonal growth , 1998 .

[20]  C. Raymond,et al.  Within tree variation and genetic control of basic density, fibre length and coarseness in Eucalyptus regnans in Tasmania , 1998 .

[21]  Michael Battaglia,et al.  Modelling Site Productivity of Eucalyptus globulus in Response to Climatic and Site Factors , 1997 .

[22]  Robert Evans,et al.  Sampling Plantation Eucalypts for Wood and Fibre Properties , 1997 .

[23]  A. Muneri,et al.  Determining fibre coarseness of small wood samples from Acacia mearnsii and Eucalyptus grandis by Kajaani FS 200 fibre analyser , 1997 .

[24]  C. Beadle,et al.  Environmental effects on growth and kraft pulp yield of Eucalyptus globulus and E. nitens. , 1996 .

[25]  R. Evans,et al.  Microfibril angle scanning of increment cores by x-ray diffractometry , 1996 .

[26]  Robert Evans,et al.  Rapid measurement of variation in tracheid transverse dimensions in a radiata pine tree , 1995 .

[27]  Robert Evans,et al.  Rapid Measurement of the Transverse Dimensions of Tracheids in Radial Wood Sections from Pinus radiata , 1994 .

[28]  P. Kanowski,et al.  Breeding objectives for pulp production of Eucalyptusglobulus under different industrial cost structures , 1993 .

[29]  P. Kanowski,et al.  Genetic Parameters and Gains Expected from Selection for Dry Weight in Eucalyptus globulus ssp. globulus in Portugal , 1992 .

[30]  F. H. Phillips Pulpwood requirements for the pulp and paper industry , 1988 .