Silicon Material Properties for VLSI Circuitry

Publisher Summary This chapter defines VLSI as a circuit composed of at least 10 5 active electronic gates (AEGs) per die. VLSI structures will provide for high-speed—low-delay-time—circuitry that consumes little power in the smallest possible area of a silicon wafer. The active components of the VLSI circuit will likely be concentrated in a region limited to the micrometer of silicon nearest the wafer surface. Within this micrometer, the VLSI structure may consist of multiple layers of p–n junctions separated in depth by as little as 1000 A. These shallow junctions will require steep dopant gradients to ensure high-speed circuit performance. The active components will likely be laterally separated by regions of selectively oxidized silicon to enhance device-to-device isolation. The fabrication of VLSI circuit structures with these features may require the extensive use of several processing techniques only now coming to the forefront. The availability of high-quality polycrystalline silicon is the starting point for high-performance VLSI circuitry. Unwanted impurities in the starting raw polycrystalline silicon can directly contribute to VLSI circuit degradation and failure. The starting raw materials for polycrystalline silicon are quartzite and carbon. Carbon, a common impurity in silicon, is introduced into the refining process in the form of coal, coke, and wood chips. The process for transforming semiconductor-grade polycrystalline silicon into single-crystal ingots can introduce a number of factors that may degrade the performance of VLSI circuits, such as dopant in-homogeneities, excess vacancies or silicon self-interstitials, unwanted impurities, and grown-in crystal imperfections.

[1]  S. Prussin,et al.  Generation and Distribution of Dislocations by Solute Diffusion , 1961 .

[2]  P. Chatterjee,et al.  Leakage studies in high-density dynamic MOS memory devices , 1979 .

[3]  F. Trumbore,et al.  Solid solubilities of impurity elements in germanium and silicon , 1960 .

[4]  H. Huff,et al.  Distribution Coefficient of Boron and Phosphorus in Silicon , 1971 .

[5]  T. Tan,et al.  Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si , 1977 .

[6]  A. D. Kock,et al.  The influence of thermal point defects on the precipitation of oxygen in dislocation‐free silicon crystals , 1981 .

[7]  P. Petroff,et al.  Elimination of Process‐Induced Stacking Faults by Preoxidation Gettering of Si Wafers II . Process , 1976 .

[8]  C. W. Pearce,et al.  Properties of uniform oxygen Czochralski silicon crystals , 1980 .

[9]  C. S. Fuller,et al.  Reactions of group iii acceptors with oxygen in silicon crystals , 1960 .

[10]  J. Bloem,et al.  Slip in Silicon Epitaxy , 1972 .

[11]  W. Shockley Problems related to p-n junctions in silicon , 1961 .

[12]  C. S. Fuller,et al.  Resistivity changes in silicon single crystals induced by heat treatment , 1955 .

[13]  K. V. Ravi,et al.  Electrically Active Stacking Faults in Silicon , 1973 .

[14]  A. Jordan,et al.  The electrical properties of dislocations in silicon—II. The effects on conductivity , 1969 .

[15]  W. Shockley,et al.  Metal Precipitates in Silicon p‐n Junctions , 1960 .

[16]  E. Mets Poisoning and Gettering Effects in Silicon Junctions , 1965 .

[17]  K. Morizane,et al.  Thermal Stress and Plastic Deformation of Thin Silicon Slices , 1969 .

[18]  Robert W. Keyes,et al.  The evolution of digital electronics towards VLSI , 1979 .

[19]  C. Plougonven,et al.  Warpage of Silicon Wafers , 1980 .

[20]  H. Lemke Zur Abhängigkeit der Lebensdauer von der Versetzungsdichte bei tiegelfreien Silizium‐Einkristallen , 1965 .

[21]  J. E. Lawrence The Cooperative Diffusion Effect , 1966 .

[22]  R. N. Hall,et al.  Diffusion and Solubility of Copper in Extrinsic and Intrinsic Germanium, Silicon, and Gallium Arsenide , 1964 .

[23]  A. Goetzberger,et al.  Influence of mechanical damage on avalanche breakdown in silicon pn junctions , 1964 .

[24]  A. Bohg,et al.  Influence of film stress and thermal oxidation on the generation of dislocations in silicon , 1978 .

[25]  W. Kaiser Electrical and Optical Properties of Heat-Treated Silicon , 1957 .

[26]  J. Bardeen,et al.  The transistor, a semi-conductor triode , 1948 .

[27]  T. J. Parker Diffusion in Silicon. I. Effect of Dislocation Motion on the Diffusion Coefficients of Boron and Phosphorus in Silicon , 1967 .

[28]  J. R. Patel Impurity clustering effects on dislocation generation in silicon , 1964 .

[29]  A. Jordan,et al.  The electrical properties of dislocations in silicon—I: The effects on carrier lifetime , 1969 .

[30]  H. Huff,et al.  Influence of Silicon Slice Curvature on Thermally Induced Stresses , 1971 .

[31]  L. Katz,et al.  Neutron Activation Study of a Gettering Treatment for Czochralski Silicon Substrates , 1981 .

[32]  A. D. Kock,et al.  The effect of doping on the formation of swirl defects in dislocation-free czochralski-grown silicon crystals , 1980 .

[33]  Norman G. Einspruch,et al.  Vlsi Electronics: Microstructure Science , 1982 .

[34]  W. D. Sylwestrowicz,et al.  Mechanical properties of single crystals of silicon , 1962 .

[35]  E. P. EerNisse,et al.  Viscous flow of thermal SiO2 , 1977 .

[36]  J. Chikawa,et al.  (Invited) Swirl Defects in Silicon Crystals , 1979 .

[37]  W. R. Runyan Semiconductor Measurements and Instrumentation , 1975 .

[38]  Gordon Moore Solid State: VLSI: Some fundamental challenges: Defining and designing the products made possible by very-large-scale integration are first on the list of priority tasks , 1979, IEEE Spectrum.

[39]  A. Witt,et al.  Quantitative Analysis of Microsegregation in Silicon Grown by the Czochralski Method , 1976 .

[40]  T. Venkatesan,et al.  Dose dependence in the laser annealing of arsenic-implanted silicon , 1978 .

[41]  A. Witt,et al.  Impurity Distribution in Single Crystals III . Impurity Heterogeneities in Single Crystals Rotated during Pulling from the Melt , 1967 .

[42]  K. V. Ravi,et al.  Imperfections and impurities in semiconductor silicon , 1981 .

[43]  W. C. Dash Evidence of Dislocation Jogs in Deformed Silicon , 1958 .

[44]  D. W. Short,et al.  Electrical resistivity recovery of cold-worked high purity nickel , 1967 .

[45]  S. M. Hu,et al.  Defects in silicon substrates , 1977 .

[46]  J. E. Lawrence Stacking Faults in Annealed Silicon Surfaces , 1969 .

[47]  E. Hearn,et al.  The closed boat: A new approach for semiconductor batch processing☆ , 1976 .

[48]  G. Teal,et al.  Single crystals of germanium and silicon—Basic to the transistor and integrated circuit , 1976, IEEE Transactions on Electron Devices.

[49]  W. Read LXXXVII. Theory of dislocations in germanium , 1954 .

[50]  S. Hu Temperature dependence of critical stress in oxygen‐free silicon , 1978 .

[51]  Y. Yatsurugi,et al.  Concentration and Behavior of Carbon in Semiconductor Silicon , 1970 .

[52]  H. Queisser Forward characteristics and efficiencies of silicon solar cells , 1962 .

[53]  R. Prim,et al.  The Distribution of Solute in Crystals Grown from the Melt. Part I. Theoretical , 1953 .

[54]  S. Hu Temperature Distribution and Stresses in Circular Wafers in a Row During Radiative Cooling , 1969 .

[55]  T. S. Moss,et al.  Handbook on semiconductors , 1980 .

[56]  S. Kishino,et al.  Suppression of oxidation‐stacking‐fault generation by preannealing in N2 atmosphere , 1978 .

[57]  Westbrook Rd,et al.  Lifetime Factors in Silicon , 1980 .

[58]  V. Deline,et al.  Physical and electrical properties of laser‐annealed ion‐implanted silicon , 1978 .

[59]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[60]  W. Kaiser,et al.  Infrared Absorption and Oxygen Content in Silicon and Germanium , 1956 .

[61]  H. Higuchi,et al.  Evaluation of Dislocation Generation at Si3 N 4 Film Edges on Silicon Substrates by Selective Oxidation , 1981 .

[62]  U. Gösele,et al.  Interstitial supersaturation near phosphorus‐diffused emitter zones in silicon , 1979 .

[63]  J. F. Gibbons,et al.  Ion implantation in semiconductors—Part I: Range distribution theory and experiments , 1968 .

[64]  C. S. Fuller,et al.  Interactions between Oxygen and Acceptor Elements in Silicon , 1958 .

[65]  H. R. Huff,et al.  Minority‐Carrier Lifetime: Correlation with IC Process Parameters , 1979 .

[66]  V. Heine Dangling bonds and dislocations in semiconductors. , 1966 .

[67]  G. Schwuttke Study of Copper Precipitation Behavior in Silicon Single Crystals , 1961 .

[68]  R. E. Gegenwarth,et al.  Effect Of Plastic Deformation Of Silicon Wafers On Overlay , 1977, Other Conferences.

[69]  T. Enomoto,et al.  The applications of the high-pressure oxidation process to the fabrication of MOS LSI , 1979, IEEE Transactions on Electron Devices.

[70]  C. Sah,et al.  Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics , 1957, Proceedings of the IRE.

[71]  William Shockley,et al.  The theory of p-n junctions in semiconductors and p-n junction transistors , 1949, Bell Syst. Tech. J..

[72]  Y. Tamaki,et al.  Dislocation Generation at Si3 N 4 Film Edges on Silicon Substrates and Viscoelastic Behavior of SiO2 Films , 1979 .

[73]  H. A. Waggener,et al.  Precipitation‐Induced Currents and Generation‐Recombination Currents in Intentionally Contaminated Silicon P+N Junctions , 1977 .

[74]  M. Collet Recombination‐Generation Centers Caused by 60°‐Dislocations in Silicon , 1970 .

[75]  W. R. Runyan Silicon Semiconductor Technology , 1965 .

[76]  U. Gösele,et al.  The formation of swirl defects in silicon by agglomeration of self-interstitials , 1977 .

[77]  B. G. Cohen,et al.  X-ray measurement of elastic strain and annealing in semiconductors , 1970 .

[78]  G. Love,et al.  Dislocation pipe diffusion , 1964 .

[79]  H. Huff,et al.  Plastic Deformation in Central Regions of Epitaxial Silicon Slices , 1971 .

[80]  J. R. Patel,et al.  Defect states associated with dislocations in silicon , 1979 .

[81]  G. Schwuttke,et al.  Minority Carrier Lifetime in Annealed Silicon Crystals Containing Oxygen , 1978, November 16.

[82]  L. Kimerling,et al.  Oxygen‐related donor states in silicon , 1981 .

[83]  J. E. Lawrence Solute diffusion in plastically deformed silicon crystals , 1967 .

[84]  G. Teal,et al.  A New Bridge Photo‐Cell Employing a Photo‐Conductive Effect in Silicon. Some Properties of High Purity Silicon , 1946 .

[85]  J. R. Patel,et al.  The electrical properties of stacking faults and precipitates in heat‐treated dislocation‐free Czochralski silicon , 1977 .

[86]  G. Schwuttke,et al.  Silicon material problems in semiconductor device technology , 1970 .

[87]  A. Cottrell,et al.  Dislocations and plastic flow in crystals , 1953 .