Robust Adaptive Finite-Time Parameter Estimation for Nonlinearly Parameterized Nonlinear Systems

The paper proposes a novel adaptive parameter estimation (APE) framework for nonlinearly parameterized nonlinear systems based on the parameter estimation error. The basic idea is to reformulate nonlinearly parameterized systems by using Taylor series expansion, and then tailor a recently proposed APE approach. An expression of the parameter estimation error is derived by introducing auxiliary filtered variables, which are then used to design the adaptive laws to achieve exponential and even finite-time convergence under the standard persistent excitation (PE) condition. Moreover, the robustness of the proposed APE against bounded disturbances is also studied. Two simulation examples demonstrate the effectiveness of the proposed estimation algorithms.

[1]  Guido Herrmann,et al.  Robust adaptive finite‐time parameter estimation and control for robotic systems , 2015 .

[2]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[3]  Jung-Shan Lin,et al.  Nonlinearities enhance parameter convergence in strict feedback systems , 1999, IEEE Trans. Autom. Control..

[4]  Guido Herrmann,et al.  Robust adaptive finite-time parameter estimation and control of nonlinear systems , 2011, 2011 IEEE International Symposium on Intelligent Control.

[5]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[6]  Martin Guay,et al.  Adaptive Estimation for a Class of Nonlinearly Parameterized Dynamical Systems , 2014, IEEE Transactions on Automatic Control.

[7]  Martin Guay,et al.  Adaptive parameter estimation for microbial growth kinetics , 2002 .

[8]  Weiping Li,et al.  Composite adaptive control of robot manipulators , 1989, Autom..

[9]  R. Marino,et al.  Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems , 1995, IEEE Trans. Autom. Control..

[10]  Jing Na,et al.  Parameter estimation error based robust adaptive law design and experiments , 2016 .

[11]  Godpromesse Kenné,et al.  Identification of nonlinear systems with time-varying parameters using a sliding-neural network observer , 2009, Neurocomputing.

[12]  S. Bhat,et al.  Continuous finite-time stabilization of the translational and rotational double integrators , 1998, IEEE Trans. Autom. Control..

[13]  X. Ren,et al.  Robust adaptive finite-time parameter estimation for linearly parameterized nonlinear systems , 2013, Proceedings of the 32nd Chinese Control Conference.

[14]  Martin Guay,et al.  Finite-time Parameter Estimation in Adaptive Control of Nonlinear Systems , 2008, 2007 American Control Conference.

[15]  Guido Herrmann,et al.  Adaptive input and parameter estimation with application to engine torque estimation , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[16]  Jeng Tze Huang Sufficient conditions for parameter convergence in linearizable systems , 2003, IEEE Trans. Autom. Control..

[17]  Hideki Hashimoto,et al.  VSS theory-based parameter identification scheme for MIMO systems , 1996, Autom..

[18]  I. Kanellakopoulos,et al.  Nonlinearities enhance parameter convergence in output-feedback systems , 1998, IEEE Trans. Autom. Control..

[19]  Anuradha M. Annaswamy,et al.  Parameter convergence in nonlinearly parameterized systems , 2003, IEEE Trans. Autom. Control..

[20]  Anuradha M. Annaswamy,et al.  Adaptive control of continuous time systems with convex/concave parametrization , 1998, Autom..