Long-travel electrothermally driven resonant cantilever microactuators

Silicon microactuators capable of very long travel are described. The design is based on a laterally resonant cantilever, driven by an electrothermal shape bimorph located at the root. Performance characteristics are given for deep structures fabricated in bonded silicon-on-insulator material. Peak-to-peak displacements of more than 500 μm are obtained with cantilevers of 14 mm length, 30 μm width and 100 μm depth using a 20 V drive, when the resonant frequency of the cantilever is matched to the frequency response of the electrothermal transducer. Experimental data are compared with a simple model, and variables affecting the quality factor are discussed. The actuators are shown to be suitable for use in optical scanning systems based on moving waveguides.

[1]  A. Brunnschweiler,et al.  Electrothermally excited silicon beam mechanical resonators , 1987 .

[2]  W. Riethmuller,et al.  Thermally excited silicon microactuators , 1988 .

[3]  Jan H. J. Fluitman,et al.  Performance of thermally excited resonators , 1990 .

[4]  Michael Curt Elwenspoek,et al.  Frequency Dependence of Thermal Excitation of Micromechanical Resonators , 1990 .

[5]  Hiroyuki Fujita,et al.  Fabrication and operation of polyimide bimorph actuators for a ciliary motion system , 1993 .

[6]  E. Immonen,et al.  Cryogenic liquid level indicator based on t.e.m.f. of high-temperature superconductors , 1991 .

[7]  D. W. Burns,et al.  Characteristics of polysilicon resonant microbeams , 1992 .

[8]  Gregory N. De Brabander,et al.  Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide , 1993, Other Conferences.

[9]  Khalil Najafi,et al.  Thermal base drive for micromechanical resonators employing deep-diffusion bases , 1993 .

[10]  William C. Tang,et al.  Viscous air damping in laterally driven microresonators , 1994, Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems.

[11]  J. Esteve,et al.  Bulk silicon microelectromechanical devices fabricated from commercial bonded and etched-back silicon-on-insulator substrates , 1995 .

[12]  P. Labeye,et al.  Micro-opto mechanical switch integrated on silicon , 1995 .

[13]  Surface-micromachined epitaxial silicon cantilevers as movable optical waveguides on silicon-on-insulator substrates , 1995 .

[14]  Victor M. Bright,et al.  Arrays of thermal microactuators coupled to micro-optical components , 1996, Optics & Photonics.

[15]  Victor M. Bright,et al.  Force measurements of polysilicon thermal microactuators , 1996, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[16]  Kurt E. Petersen,et al.  Process for in-plane and out-of-plane single-crystal-silicon thermal microactuators , 1996 .

[17]  Wensyang Hsu,et al.  An electro-thermally and laterally driven polysilicon microactuator , 1997 .

[18]  John H. Comtois,et al.  Electrothermal actuators fabricated in four-level planarized surface micromachined polycrystalline silicon , 1997 .

[19]  P. Mottier,et al.  Integrated micro-optomechanical laser beam deflector , 1998 .

[20]  H. Fujita,et al.  Microactuators and micromachines , 1998, Proc. IEEE.

[21]  Suspended optical waveguide with in-plane degree of freedom for microelectromechanical applications , 1998 .

[22]  Eric M. Yeatman,et al.  Dual numerical aperture confocal operation of moving fibre bar code reader , 1999 .

[23]  Eric Ollier,et al.  Micro-opto-mechanical vibration sensor integrated on silicon , 1999 .

[24]  Edward S. Kolesar,et al.  Thermally-actuated cantilever beam for achieving large in-plane mechanical deflections , 1999 .

[25]  Huma Ashraf,et al.  STATE OF THE ART DEEP SILICON ANISOTROPIC ETCHING ON SOI BONDED SUBSTRATES FOR DIELECTRIC ISOLATION AND MEMS APPLICATIONS , 1999 .

[26]  Ian Ronald Johnston,et al.  Recent advances in silicon etching for MEMS using the ASE™ process , 1999 .

[27]  Edward S. Kolesar,et al.  In-plane tip deflection and force achieved with asymmetrical polysilicon electrothermal microactuators , 2000 .

[28]  Edward S. Kolesar,et al.  Theoretical and experimental characterization of the in-plane tip force and deflection achieved with asymmetrical polysilicon electrothermal microactuators , 2000, SPIE MOEMS-MEMS.

[29]  David A. Roberts,et al.  1D and 2D laser line scan generation using a fiber optic resonant scanner , 2000, Symposium on Applied Photonics.