The singular boundary method for steady-state nonlinear heat conduction problem with temperature-dependent thermal conductivity

[1]  Andrzej J. Nowak,et al.  Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions , 1981 .

[2]  R. Białecki,et al.  SOLVING NONLINEAR STEADY-STATE POTENTIAL PROBLEMS IN INHOMOGENOUS BODIES USING THE BOUNDARY-ELEMENT METHOD , 1990 .

[3]  Günther Kuhn,et al.  Boundary element solution of heat conduction problems in multizone bodies of non-linear material , 1993 .

[4]  R. Keanini,et al.  Inverse finite element reduced mesh method for predicting multi-dimensional phase change boundaries and nonlinear solid phase heat transfer , 1996 .

[5]  Michal Křížek,et al.  Finite element approximation of a nonlinear heat conduction problem in anisotropic media , 1998 .

[6]  Baolin Wang,et al.  Application of finite element-finite difference method to the determination of transient temperature field in functionally graded materials , 2005 .

[7]  C. Arslanturk A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity , 2005 .

[8]  Davood Domiri Ganji,et al.  Some nonlinear heat transfer equations solved by three approximate methods , 2007 .

[9]  Davood Domiri Ganji,et al.  Application of variational iteration method and homotopy–perturbation method for nonlinear heat diffusion and heat transfer equations , 2007 .

[10]  Daniel Lesnic,et al.  Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions , 2008 .

[11]  G. Domairry,et al.  Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity , 2009 .

[12]  F. Khani,et al.  A series solution of the fin problem with a temperature-dependent thermal conductivity , 2009 .

[13]  D. Ganji,et al.  Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity , 2009 .

[14]  Wen Chen,et al.  A method of fundamental solutions without fictitious boundary , 2010 .

[15]  H. Ahmadikia,et al.  Analytical Solution for Different Profiles of Fin with Temperature-Dependent Thermal Conductivity , 2010 .

[16]  Qing Hua Qin,et al.  Hybrid‐Trefftz finite element method for heat conduction in nonlinear functionally graded materials , 2011 .

[17]  Zhuo-Jia Fu,et al.  Boundary knot method for heat conduction in nonlinear functionally graded material , 2011 .

[18]  Chuanzeng Zhang,et al.  Singular boundary method for solving plane strain elastostatic problems , 2011 .

[19]  Xiaoqiao He,et al.  Singular boundary method for steady-state heat conduction in three dimensional general anisotropic media , 2012 .

[20]  Qing Hua Qin,et al.  Three Boundary Meshless Methods for Heat Conduction Analysis in Nonlinear FGMs with Kirchhoff and Laplace Transformation , 2012 .

[21]  S. Mosayebidorcheh,et al.  Series solution of convective radiative conduction equation of the nonlinear fin with temperature dependent thermal conductivity , 2012 .

[22]  Fundamental-Solution-Based Hybrid Element Model for Nonlinear Heat Conduction Problems with Temperature-Dependent Material Properties , 2013 .

[23]  Infinite domain potential problems by a new formulation of singular boundary method , 2013 .

[24]  Xing Wei,et al.  Solving Inhomogeneous Problems by Singular Boundary Method , 2013 .

[25]  Ranjan Das,et al.  Application of Adomian decomposition method and inverse solution for a fin with variable thermal conductivity and heat generation , 2013 .

[26]  Davood Domiri Ganji,et al.  Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent properties and different fin profiles , 2014 .

[27]  A. Patra,et al.  Homotopy perturbation sumudu transform method for solving convective radial fins with temperature-dependent thermal conductivity of fractional order energy balance equation , 2014 .

[28]  Wenzhen Qu,et al.  Singular Boundary Method: Three RegularizationApproaches and ExteriorWave Applications , 2014 .

[29]  Wen Chen,et al.  Singular boundary method for modified Helmholtz equations , 2014 .

[30]  Yan Gu,et al.  Singular boundary method for inverse heat conduction problems in general anisotropic media , 2014 .

[31]  D. Ganji,et al.  Approximate solution of the nonlinear heat transfer equation of a fin with the power-law temperature-dependent thermal conductivity and heat transfer coefficient , 2014 .

[32]  Yan Gu,et al.  Burton–Miller-type singular boundary method for acoustic radiation and scattering , 2014 .

[33]  Davood Domiri Ganji,et al.  Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation , 2014 .

[34]  Evelyn N. Wang,et al.  Application of the Kirchhoff Transform to Thermal Spreading Problems With Convection Boundary Conditions , 2014, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[35]  Zhuojia Fu,et al.  Singular boundary method for water wave problems , 2015 .

[36]  Ranjan Das,et al.  Adomian decomposition method for a stepped fin with all temperature-dependent modes of heat transfer , 2015 .

[37]  Werner Theisen,et al.  Thermo-physical properties of heat-treatable steels in the temperature range relevant for hot-stamping applications , 2015, Journal of Materials Science.

[38]  M. Jones,et al.  Solving nonlinear heat transfer problems using variation of parameters , 2015 .