Proof of a Phase Transition in Probabilistic Cellular Automata

Cellular automata are a model of parallel computing. It is well known that simple deterministic cellular automata may exhibit complex behaviors such as Turing universality [3,13] but only few results are known about complex behaviors of probabilistic cellular automata.

[1]  Nazim Fatès,et al.  Fully asynchronous behavior of double-quiescent elementary cellular automata , 2006, Theor. Comput. Sci..

[2]  Péter Gács Reliable Cellular Automata with Self-Organization , 1997, FOCS 1997.

[3]  P. Chassaing,et al.  Asynchronous Cellular Automata and Brownian Motion , 2007 .

[4]  Nicolas Ollinger,et al.  Four states are enough! , 2011, Theor. Comput. Sci..

[5]  Nazim Fatès Stochastic Cellular Automata Solve the Density Classification Problem with an Arbitrary Precision , 2011, STACS.

[6]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[7]  Andrew Adamatzky Collision-Based Computing , 2002, Springer London.

[8]  Jerzy Tyszkiewicz,et al.  Mathematical Foundations of Computer Science 2008, 33rd International Symposium, MFCS 2008, Torun, Poland, August 25-29, 2008, Proceedings , 2008, MFCS.

[9]  Land,et al.  No perfect two-state cellular automata for density classification exists. , 1995, Physical review letters.

[10]  Damien Regnault,et al.  Progresses in the analysis of stochastic 2D cellular automata: A study of asynchronous 2D minority , 2007, Theor. Comput. Sci..

[11]  Marcos Kiwi,et al.  LATIN 2006: Theoretical Informatics , 2006, Lecture Notes in Computer Science.

[12]  Elchanan Mossel,et al.  Slow emergence of cooperation for win-stay lose-shift on trees , 2006, Machine Learning.

[13]  Jacques Mazoyer,et al.  A Six-State Minimal Time Solution to the Firing Squad Synchronization Problem , 1987, Theor. Comput. Sci..

[14]  Nazim Fatès,et al.  Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata , 2006, LATIN.

[15]  Nazim Fatès,et al.  Asynchronism Induces Second-Order Phase Transitions in Elementary Cellular Automata , 2007, J. Cell. Autom..

[16]  Damien Regnault,et al.  Directed Percolation Arising in Stochastic Cellular Automata Analysis , 2008, MFCS.