A computational framework for simulation of biogeochemical tracers in the ocean

[1] A novel computational framework is introduced for the efficient simulation of chemical and biological tracers in ocean models. The framework is based on the “transport matrix” formulation, a scheme for capturing the complex three-dimensional transport of tracers in a general circulation model (GCM) as a sparse matrix, thus reducing the task of simulating tracers to a sequence of simple matrix-vector products. The principal advantages of this formulation are efficiency and convenience. It is many orders of magnitude more efficient than GCMs, allowing us to address problems that are currently either difficult or unaffordable with GCMs. The scheme also allows us to quickly “prototype” new biogeochemical parameterizations or “plug in” existing ones. This paper describes the key features and advantages of the transport matrix method, and illustrates its application to a series of realistic problems in chemical and biological oceanography. The examples range from simulation of a transient tracer (SF6) to adjoint sensitivity of a complex coupled biogeochemical model. Finally, the paper describes an efficient, portable, and freely available implementation of this computational scheme that provides the necessary framework for simulating any biogeochemical tracer.

[1]  Charles S. Zender,et al.  Interannual variability in atmospheric mineral aerosols from a 22‐year model simulation and observational data , 2003 .

[2]  Patrick Heimbach,et al.  Automatic Generation of Efficient Adjoint Code for a Parallel Navier-Stokes Solver , 2002, International Conference on Computational Science.

[3]  N. Mahowald,et al.  Inverse methods in global biogeochemical cycles , 2000 .

[4]  S. Philander,et al.  Interdecadal Climate Fluctuations That Depend on Exchanges Between the Tropics and Extratropics , 1997, Science.

[5]  T Kaminski,et al.  Inverse modeling of atmospheric carbon dioxide fluxes. , 2001, Science.

[6]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[7]  Thomas W. N. Haine,et al.  Relationships among tracer ages , 2003 .

[8]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[9]  Thomas W. N. Haine,et al.  A Generalized Transport Theory: Water-Mass Composition and Age , 2002 .

[10]  Wilco Hazeleger,et al.  Pathways into the Pacific Equatorial Undercurrent: A Trajectory Analysis* , 2005 .

[11]  François W. Primeau,et al.  Sensitivity and Optimization Study of a Biogeochemistry Ocean Model using an Implicit Solver and In-Situ Phosphate Data , 2006 .

[12]  Carl Wunsch,et al.  Practical global oceanic state estimation , 2007 .

[13]  Randye L. Rutberg,et al.  High-latitude forcing of interior ocean D 13 C , 2006 .

[14]  L. Perelman,et al.  Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling , 1997 .

[15]  C. Kelley Solving Nonlinear Equations with Newton's Method , 1987 .

[16]  Patrick Heimbach,et al.  An efficient exact adjoint of the parallel MIT General Circulation Model, generated via automatic differentiation , 2005, Future Gener. Comput. Syst..

[17]  S. Khatiwala,et al.  Accelerated simulation of passive tracers in ocean circulation models , 2003 .

[18]  B. Christianson Reverse accumulation and attractive fixed points , 1994 .

[19]  R. Wanninkhof Relationship between wind speed and gas exchange over the ocean , 1992 .

[20]  T. Peng,et al.  Anthropogenic CO 2 in the ocean , 2005 .

[21]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[22]  Edward A. Boyle,et al.  Decoupling of iron and phosphate in the global ocean , 2005 .

[23]  Stephanie Dutkiewicz,et al.  Interactions of the iron and phosphorus cycles: A three‐dimensional model study , 2005 .

[24]  M. Powell,et al.  On the Estimation of Sparse Jacobian Matrices , 1974 .

[25]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[26]  Timothy M. Hall,et al.  Transit-Time and Tracer-Age Distributions in Geophysical Flows , 2000 .

[27]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[28]  土屋 瑞樹,et al.  Upper waters of the intertropical Pacific Ocean , 1968 .

[29]  James Demmel,et al.  SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.

[30]  Carl Wunsch,et al.  Estimating air‐sea fluxes of heat, freshwater, and momentum through global ocean data assimilation , 2004 .

[31]  François Primeau,et al.  Characterizing Transport between the Surface Mixed Layer and the Ocean Interior with a Forward and Adjoint Global Ocean Transport Model , 2005 .

[32]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[33]  Samar Khatiwala,et al.  Age Tracers in an Ocean GCM , 2001 .

[34]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[35]  R. Giering,et al.  Efficient Sensitivities for the Spin-Up Phase , 2006 .

[36]  François Primeau,et al.  The diffusive ocean conveyor , 2006 .

[37]  M. Giles On the iterative solution of adjoint equations , 2000 .

[38]  J. Brandts [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .

[39]  Samar Khatiwala,et al.  Estimates of anthropogenic carbon in the Indian Ocean with allowance for mixing and time‐varying air‐sea CO2 disequilibrium , 2004 .

[40]  Patrick Heimbach,et al.  Controls on ocean productivity and air‐sea carbon flux: An adjoint model sensitivity study , 2006 .

[41]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[42]  Reiner Schlitzer,et al.  Applying the Adjoint Method for Biogeochemical Modeling: Export of Participate Organic Matter in the World Ocean , 2013 .

[43]  Keith W. Dixon,et al.  Simulations of radiocarbon in a coarse-resolution world ocean model: 1. Steady state prebomb distributions , 1989 .

[44]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..

[45]  Carl A. M. Brenninkmeijer,et al.  Atmospheric SF6: Trends, sources and prospects , 1998 .

[46]  Jens Schröter,et al.  Testing a marine ecosystem model: Sensitivity analysis and parameter optimization , 2001 .

[47]  François Primeau,et al.  Optimization and sensitivity study of a biogeochemistry ocean model using an implicit solver and in situ phosphate data , 2006 .

[48]  Synte Peacock,et al.  High-latitude forcing of interior ocean δ13C , 2005 .

[49]  Dimitris Menemenlis,et al.  The Origin, Pathway, and Destination of Niño-3 Water Estimated by a Simulated Passive Tracer and Its Adjoint , 2004 .

[50]  Thomas W. N. Haine,et al.  Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean , 2004 .

[51]  Jorge L. Sarmiento,et al.  Tracer dating and ocean ventilation , 1990 .

[52]  Carl Wunsch,et al.  An adjoint sensitivity study of chlorofluorocarbons in the North Atlantic , 2004 .

[53]  Alex Pothen,et al.  What Color Is Your Jacobian? Graph Coloring for Computing Derivatives , 2005, SIAM Rev..