Using Parsimony to Guide Maximum Likelihood Searches

The performance of maximum likelihood searches can be boosted by using the most parsimonious tree as a starting point for the search. The time spent in performing the parsimony search to find this starting tree is insignificant compared to the time spent in the maximum likelihood search, leading to an overall gain in search time. These parsimony boosted maximum likelihood searches lead to topologies with scores statistically similar to the unboosted searches, but in less time.

[1]  Hyrum Carroll,et al.  Phylogenetic Analysis of Large Sequence Data Sets , 2005 .

[2]  Tamir Tuller,et al.  Maximum Likelihood of Evolutionary Trees Is Hard , 2005, RECOMB.

[3]  J. Bergsten A review of long‐branch attraction , 2005, Cladistics : the international journal of the Willi Hennig Society.

[4]  J. Huelsenbeck Performance of Phylogenetic Methods in Simulation , 1995 .

[5]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[6]  Olivier Poch,et al.  BAliBASE 3.0: Latest developments of the multiple sequence alignment benchmark , 2005, Proteins.

[7]  M. Siddall,et al.  Success of Parsimony in the Four‐Taxon Case: Long‐Branch Repulsion by Likelihood in the Farris Zone , 1998 .

[8]  G. Serio,et al.  A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.

[9]  J. Oliver,et al.  The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.

[10]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[11]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[12]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[13]  J. Huelsenbeck,et al.  SUCCESS OF PHYLOGENETIC METHODS IN THE FOUR-TAXON CASE , 1993 .

[14]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[15]  J. Felsenstein,et al.  A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. , 1994, Molecular biology and evolution.

[16]  David S. Johnson,et al.  The computational complexity of inferring rooted phylogenies by parsimony , 1986 .

[17]  Reed A. Cartwright,et al.  DNA assembly with gaps (Dawg): simulating sequence evolution , 2005, Bioinform..

[18]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[19]  R. Sokal,et al.  A METHOD FOR DEDUCING BRANCHING SEQUENCES IN PHYLOGENY , 1965 .

[20]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[21]  Hyrum Carroll,et al.  DNA reference alignment benchmarks based on tertiary structure of encoded proteins , 2007, Bioinform..

[22]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[23]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[24]  R. Dingledine,et al.  Single neuron studies of opiate action in the guinea pig myenteric plexus. , 1975, Life sciences.

[25]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[26]  Peer Bork,et al.  SMART: identification and annotation of domains from signalling and extracellular protein sequences , 1999, Nucleic Acids Res..

[27]  Gajendra P. S. Raghava,et al.  OXBench: A benchmark for evaluation of protein multiple sequence alignment accuracy , 2003, BMC Bioinformatics.

[28]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[29]  G. Giribet,et al.  TNT: Tree Analysis Using New Technology , 2005 .