Linear codes over finite rings are trace codes

[1]  M. Shi,et al.  Optimal Ternary Cubic Two‐Weight Codes , 2018, Chinese Journal of Electronics.

[2]  Yan Liu,et al.  Two-weight and three-weight codes from trace codes over , 2016, Discret. Math..

[3]  Marcus Greferath,et al.  Generalized Frobenius extensions of finite rings and trace functions , 2010, 2010 IEEE Information Theory Workshop.

[4]  T. Nakayama,et al.  A Remark on Frobenius Extensions and Endomorphism Rings , 1959, Nagoya Mathematical Journal.

[5]  Z. Wan Lectures on Finite Fields and Galois Rings , 2003 .

[6]  Sergio R. López-Permouth,et al.  Some remarks on non projective Frobenius algebras and linear codes , 2019, Des. Codes Cryptogr..

[7]  Yan Liu,et al.  Trace codes over $${\mathbb {Z}}_4,$$Z4, and Boolean functions , 2019, Des. Codes Cryptogr..

[8]  Yan Liu,et al.  Optimal Two-Weight Codes From Trace Codes Over $\mathbb {F}_2+u\mathbb {F}_2$ , 2016, IEEE Communications Letters.

[9]  Yan Liu,et al.  Two and three weight codes over Fp+uFp$\mathbb {F}_{p}+u\mathbb {F}_{p}$ , 2016, Cryptography and Communications.

[10]  Yan Liu,et al.  Optimal binary codes from trace codes over a non-chain ring , 2017, Discret. Appl. Math..

[11]  Liqin Qian,et al.  Few-weight codes from trace codes over a local ring , 2017, Applicable Algebra in Engineering, Communication and Computing.

[12]  Patrick Solé,et al.  Two New Families of Two-Weight Codes , 2016, IEEE Transactions on Information Theory.

[13]  Irwansyah,et al.  Self-Dual Normal Basis of a Galois Ring , 2014 .

[14]  Can Xiang,et al.  It is indeed a fundamental construction of all linear codes , 2016, ArXiv.

[15]  Jay A. Wood Duality for modules over finite rings and applications to coding theory , 1999 .

[16]  M. Shi,et al.  FEW-WEIGHT CODES FROM TRACE CODES OVER $R_{k}$ , 2018, Bulletin of the Australian Mathematical Society.

[17]  Jay A. Wood FOUNDATIONS OF LINEAR CODES DEFINED OVER FINITE MODULES: THE EXTENSION THEOREM AND THE MACWILLIAMS IDENTITIES , 2009 .

[18]  Hongwei Zhu,et al.  Optimal three-weight cubic codes , 2016, ArXiv.