Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques

Single-walled carbon nanotube (SWCNT) bundles have the potential to provide an attractive solution for the resistivity and electromigration problems faced by traditional copper interconnects. This paper discusses the modeling of nanotube bundle resistance for on-chip interconnect applications. Based on recent experimental results, the authors model the impact of nanotube diameter on contact and ohmic resistance, which has been largely ignored in previous bundle models. The results indicate that neglecting the diameter-dependent nature of ohmic and contact resistances can produce significant errors. Using the resistance model, it is shown that SWCNT bundles can provide up to one order of magnitude reduction in resistance when compared with traditional copper interconnects depending on bundle geometry and individual nanotube diameter. Furthermore, for local interconnect applications, an optimum nanotube diameter exists to minimize the resistance of the carbon nanotube bundle

[1]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[2]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[3]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[4]  Qian Wang,et al.  Electrical contacts to carbon nanotubes down to 1nm in diameter , 2005 .

[5]  G. Duesberg,et al.  Carbon nanotubes for interconnect applications , 2002, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[6]  H. Dai,et al.  Quantum interference and ballistic transmission in nanotube electron waveguides. , 2001, Physical review letters.

[7]  T. Kuan,et al.  Alteration of Cu conductivity in the size effect regime , 2004 .

[8]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[9]  Ji-Yong Park,et al.  Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. , 2005, Physical review letters.

[10]  Franz Kreupl,et al.  Carbon nanotubes in interconnect applications , 2002 .

[11]  A. Alec Talin,et al.  Electrical contacts to nanotubes and nanowires: why size matters , 2006 .

[12]  Kaustav Banerjee,et al.  Performance analysis of carbon nanotube interconnects for VLSI applications , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[13]  M. Meyyappan,et al.  Bottom-up approach for carbon nanotube interconnects , 2003 .

[14]  J. Meindl,et al.  Monolayer metallic nanotube interconnects: promising candidates for short local interconnects , 2005, IEEE Electron Device Letters.

[15]  Charles M. Lieber,et al.  Diameter-Controlled Synthesis of Carbon Nanotubes , 2002 .

[16]  K. Roy,et al.  A circuit model for carbon nanotube interconnects: comparative study with Cu interconnects for scaled technologies , 2004, IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004..

[17]  N. Goldsman,et al.  Low-field semiclassical carrier transport in semiconducting carbon nanotubes , 2005 .

[18]  J. Meindl,et al.  Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI) , 2005, IEEE Electron Device Letters.

[19]  W. Steinhögl,et al.  Size-dependent resistivity of metallic wires in the mesoscopic range , 2002 .

[20]  P. Ajayan,et al.  Smallest carbon nanotube , 1992, Nature.

[21]  M. Purewal Electron transport in single -walled carbon nanotubes , 2008 .

[22]  A. Naeemi,et al.  Impact of electron-phonon scattering on the performance of carbon nanotube interconnects for GSI , 2005, IEEE Electron Device Letters.

[23]  J. Hafner,et al.  Fabry - Perot interference in a nanotube electron waveguide , 2001, Nature.

[24]  P. Kapur,et al.  Technology and reliability constrained future copper interconnects. I. Resistance modeling , 2002 .

[25]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[26]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[27]  Martel,et al.  Intertube coupling in ropes of single-wall carbon nanotubes , 2000, Physical review letters.

[28]  Tsuneya Ando,et al.  Phonons and Electron-Phonon Scattering in Carbon Nanotubes , 2002 .