ABCD matrix of the human lens gradient-index profile: applicability of the calculation methods.

The applicability of different approximate methods proposed to determine the paraxial properties of the gradient-index (GRIN) distribution resembling that of the human lens, by means of the system ABCD matrix, is tested. Thus, the parabolic-ray-path approximation has been extended to provide the ABCD matrix of a slab lens comprised of a rotationally GRIN medium. The results show that this method has good numerical stability, and it is also the easiest one in determining the Gaussian constants of the human lens GRIN profile.

[1]  D A Atchison,et al.  Modeling the power of the aging human eye. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[2]  Anurag Sharma,et al.  Tracing rays through graded-index media: a new method. , 1982, Applied optics.

[3]  D A Atchison,et al.  Equivalent power of the crystalline lens of the human eye: comparison of methods of calculation. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  Yanqiao Huang,et al.  Human eye modeling using a single equation of gradient index crystalline lens for relaxed and accommodated states , 2006, International Optical Design Conference.

[5]  P. J. Sands Third-Order Aberrations of Inhomogeneous Lenses , 1970 .

[6]  Duncan T. Moore,et al.  Design of Singlets with Continuously Varying Indices of Refraction , 1971 .

[7]  J. M. Pope,et al.  Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI) , 2005, Vision Research.

[8]  Analytical expressions for the paraxial parameters of a single lens with a spherical distribution of refractive index. , 1992, Applied optics.

[9]  Carlos Gómez-Reino,et al.  Gradient-index human lens as a quadratic phase transformer , 2006 .

[10]  H. Arsenault Generalization of the principal plane concept in matrix optics , 1980 .

[11]  Carlos Gómez-Reino,et al.  Gradient parameter and axial and field rays in the gradient-index crystalline lens model , 2003 .

[12]  Ludwig Matthiessen Untersuchungen über den Aplanatismus und die Periscopie der Krystalllinsen in den Augen der Fische , 1880, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[13]  Carlos Gómez-Reino,et al.  Description of gradient-index crystalline lens by a first-order optical system , 2005 .

[14]  M G Block,et al.  Matrix methods for the evaluation of lens systems with radial gradient-index elements. , 1988, American journal of optometry and physiological optics.

[15]  Henri H. Arsenault,et al.  Factorization of the transfer matrix for symmetrical optical systems , 1983 .

[16]  N A Brennan,et al.  Anatomically accurate, finite model eye for optical modeling. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Klaus Halbach,et al.  Matrix Representation of Gaussian Optics , 1964 .

[18]  David A Atchison,et al.  Explanation of the lens paradox. , 2002, Optometry and vision science : official publication of the American Academy of Optometry.

[19]  E. W. Marchand Ray Tracing in Gradient-Index Media , 1970 .

[20]  C. Palma,et al.  Extension of the Fresnel transform to ABCD systems , 1997 .

[21]  David A. Atchison,et al.  Continuous gradient index and shell models of the human lens , 1995, Vision Research.