Direct formulas for stereo-based visual odometry error modeling

Visual odometry is the most suitable method for recovering the camera motion in the context of video processing applications. The main advantages it brings are the accuracy of the estimation, the computation efficiency, and the elimination of the need to synchronize a video processing system with other odometry sensors. There is a large amount of recently published visual odometry methods, but none of them provides a reliable error model for the estimation. The goal of this paper is to present an analytical method to compute the covariance matrix for a stereo-based visual odometry method and to analyze its performance and quality by using both synthetic data and real world video sequences acquired in urban traffic scenarios.

[1]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[2]  Daniel Cremers,et al.  Scale-aware navigation of a low-cost quadrocopter with a monocular camera , 2014, Robotics Auton. Syst..

[3]  Charles V. Stewart,et al.  Robust Parameter Estimation in Computer Vision , 1999, SIAM Rev..

[4]  Kurt Konolige,et al.  Real-time Localization in Outdoor Environments using Stereo Vision and Inexpensive GPS , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[5]  Daniel Cremers,et al.  Semi-dense visual odometry for AR on a smartphone , 2014, 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[6]  Takeo Kanade,et al.  A Head-Wearable Short-Baseline Stereo System for the Simultaneous Estimation of Structure and Motion , 2011, MVA.

[7]  Sergiu Nedevschi,et al.  Linear vs. non linear minimization in stereo visual odometry , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[8]  Sergiu Nedevschi,et al.  Speed estimation for scene objects using stereo visual odometry methods , 2013, 2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP).

[9]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[10]  Joachim Weickert,et al.  Priors for Stereo Vision under Adverse Weather Conditions , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[11]  Vincent Frémont,et al.  On modeling ego-motion uncertainty for moving object detection from a mobile platform , 2014, 2014 IEEE Intelligent Vehicles Symposium Proceedings.

[12]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Robert M. Haralick Propagating covariance in computer vision , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[14]  Sergiu Nedevschi,et al.  SORT-SGM: Subpixel Optimized Real-Time Semiglobal Matching for Intelligent Vehicles , 2012, IEEE Transactions on Vehicular Technology.

[15]  Robert M. Haralick,et al.  Propagating covariance in computer vision , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[16]  Sergiu Nedevschi,et al.  Fast vision based ego-motion estimation from stereo sequences — A GPU approach , 2011, 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[17]  J.-Y. Bouguet,et al.  Pyramidal implementation of the lucas kanade feature tracker , 1999 .

[18]  F. Fraundorfer,et al.  Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications , 2012, IEEE Robotics & Automation Magazine.

[19]  K. Konolige Rough Terrain Visual Odometry , 2007 .

[20]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[21]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[22]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[23]  Sergiu Nedevschi,et al.  Stereo based visual odometry in difficult traffic scenes , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[24]  W. Marsden I and J , 2012 .

[25]  Sergiu Nedevschi,et al.  Moving rigid objects segmentation in 3D dynamic traffic scenes using a stereovision system , 2014, 2014 IEEE 10th International Conference on Intelligent Computer Communication and Processing (ICCP).