Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation

[1]  S. Clark,et al.  Dissociation between sickness behavior and emotionality during lipopolysaccharide challenge in lymphocyte deficient Rag2 −/− mice , 2015, Behavioural Brain Research.

[2]  R. Leak,et al.  Microglial and macrophage polarization—new prospects for brain repair , 2015, Nature Reviews Neurology.

[3]  Xuechu Zhen,et al.  CaMKKβ-dependent activation of AMP-activated protein kinase is critical to suppressive effects of hydrogen sulfide on neuroinflammation. , 2014, Antioxidants & redox signaling.

[4]  Jing-cheng Li,et al.  Telmisartan-induced PPARγ activity attenuates lipid accumulation in VSMCs via induction of autophagy , 2014, Molecular Biology Reports.

[5]  Jin-Tai Yu,et al.  Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre‐activation of AMPK‐dependent autophagy , 2014, British journal of pharmacology.

[6]  J. Saavedra,et al.  Telmisartan ameliorates glutamate-induced neurotoxicity: Roles of AT1 receptor blockade and PPARγ activation , 2014, Neuropharmacology.

[7]  M. Mittelbronn The M1/M2 immune polarization concept in microglia: a fair transfer? , 2014 .

[8]  E. Barroso,et al.  An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. , 2013, International journal of cardiology.

[9]  Prasenjit Manna,et al.  L‐cysteine and hydrogen sulfide increase PIP3 and AMPK/PPARγ expression and decrease ROS and vascular inflammation markers in high glucose treated human U937 monocytes , 2013, Journal of cellular biochemistry.

[10]  B. Viollet,et al.  AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. , 2013, Cell metabolism.

[11]  P. Gressens,et al.  Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro , 2013, Brain, Behavior, and Immunity.

[12]  Jing Jing Li,et al.  Metabolic stress modulates Alzheimer's β-secretase gene transcription via SIRT1-PPARγ-PGC-1 in neurons. , 2013, Cell metabolism.

[13]  D. Hardie,et al.  Metabolism of inflammation limited by AMPK and pseudo-starvation , 2013, Nature.

[14]  A. Sica,et al.  Macrophage plasticity and polarization in tissue repair and remodelling , 2013, The Journal of pathology.

[15]  S. Villapol,et al.  Candesartan, an Angiotensin II AT1-Receptor Blocker and PPAR-γ Agonist, Reduces Lesion Volume and Improves Motor and Memory Function After Traumatic Brain Injury in Mice , 2012, Neuropsychopharmacology.

[16]  I. Shimomura,et al.  Telmisartan ameliorates insulin sensitivity by activating the AMPK/SIRT1 pathway in skeletal muscle of obese db/db mice , 2012, Cardiovascular Diabetology.

[17]  J. Saavedra Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders. , 2012, Clinical science.

[18]  R. Leak,et al.  Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion After Focal Cerebral Ischemia , 2012, Stroke.

[19]  Y. Nakaya,et al.  Activation of AMPK-Sirt1 pathway by telmisartan in white adipose tissue: A possible link to anti-metabolic effects. , 2012, European journal of pharmacology.

[20]  S. Appel,et al.  Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS , 2012, Experimental Neurology.

[21]  A. Means,et al.  Calcium/Calmodulin-dependent Protein Kinase Kinase 2: Roles in Signaling and Pathophysiology* , 2012, The Journal of Biological Chemistry.

[22]  A. Means,et al.  Calcium/Calmodulin-dependent Protein Kinase Kinase 2 Regulates Macrophage-mediated Inflammatory Responses* , 2012, The Journal of Biological Chemistry.

[23]  J. Saavedra,et al.  Telmisartan ameliorates lipopolysaccharide-induced innate immune response through peroxisome proliferator-activated receptor-&ggr; activation in human monocytes , 2012, Journal of hypertension.

[24]  Andrew H. Miller,et al.  Psychoneuroimmunology Meets Neuropsychopharmacology: Translational Implications of the Impact of Inflammation on Behavior , 2012, Neuropsychopharmacology.

[25]  J. Saavedra,et al.  Telmisartan directly ameliorates the neuronal inflammatory response to IL-1β partly through the JNK/c-Jun and NADPH oxidase pathways , 2012, Journal of Neuroinflammation.

[26]  A. Rodriguez-Perez,et al.  Involvement of PPAR-γ in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease , 2012, Journal of Neuroinflammation.

[27]  A. Means,et al.  Characterization of the CaMKKβ-AMPK signaling complex. , 2011, Cellular signalling.

[28]  S. Kersten,et al.  Energy-sensing Factors Coactivator Peroxisome Proliferator-activated Receptor γ Coactivator 1-α (PGC-1α) and AMP-activated Protein Kinase Control Expression of Inflammatory Mediators in Liver , 2011, The Journal of Biological Chemistry.

[29]  C. Glass,et al.  Microglial cell origin and phenotypes in health and disease , 2011, Nature Reviews Immunology.

[30]  S. Amato,et al.  Bioenergy sensing in the brain , 2011, Cell cycle.

[31]  Ji Li,et al.  PPAR-γ and AMPK--advantageous targets for myocardial ischemia/reperfusion therapy. , 2011, Biochemical pharmacology.

[32]  S. David,et al.  Repertoire of microglial and macrophage responses after spinal cord injury , 2011, Nature Reviews Neuroscience.

[33]  Yan Leng,et al.  Angiotensin II AT1 Receptor Blockade Ameliorates Brain Inflammation , 2011, Neuropsychopharmacology.

[34]  C. Bernstein,et al.  AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis. , 2010, Biochemical pharmacology.

[35]  A. Lombardi,et al.  PPARs: Nuclear Receptors Controlled by, and Controlling, Nutrient Handling through Nuclear and Cytosolic Signaling , 2010, PPAR research.

[36]  A. Kavelaars,et al.  Neuro-immune, behavioral and molecular aspects of brain damage , 2010, Brain, Behavior, and Immunity.

[37]  Chih-Hsin Tang,et al.  Berberine suppresses neuroinflammatory responses through AMP‐activated protein kinase activation in BV‐2 microglia , 2010, Journal of cellular biochemistry.

[38]  N. Sreejayan,et al.  AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of beta-catenin at Ser 552. , 2010, Biochemical and biophysical research communications.

[39]  V. Perry,et al.  Microglia in neurodegenerative disease , 2010, Nature Reviews Neurology.

[40]  L. McCullough,et al.  Effects of AMP-Activated Protein Kinase in Cerebral Ischemia , 2010, Journal of Cerebral Blood Flow and Metabolism.

[41]  M. Mogi,et al.  Cognitive Deficit in Amyloid-&bgr;–Injected Mice Was Improved by Pretreatment With a Low Dose of Telmisartan Partly Because of Peroxisome Proliferator-Activated Receptor-&ggr; Activation , 2009, Hypertension.

[42]  Shailendra Giri,et al.  Metformin Attenuated the Autoimmune Disease of the Central Nervous System in Animal Models of Multiple Sclerosis1 , 2009, The Journal of Immunology.

[43]  V. Perry,et al.  Microglial physiology: unique stimuli, specialized responses. , 2009, Annual review of immunology.

[44]  Marcel Leist,et al.  The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. , 2009, ALTEX.

[45]  J. Suttles,et al.  Adenosine 5′-Monophosphate-Activated Protein Kinase Promotes Macrophage Polarization to an Anti-Inflammatory Functional Phenotype1 , 2008, The Journal of Immunology.

[46]  D. Ruano,et al.  Inflammatory Response in the Hippocampus of PS1M146L/APP751SL Mouse Model of Alzheimer's Disease: Age-Dependent Switch in the Microglial Phenotype from Alternative to Classic , 2008, The Journal of Neuroscience.

[47]  J. Sheridan,et al.  Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia , 2008, Journal of Neuroinflammation.

[48]  Frank Brombacher,et al.  Macrophage-specific PPARγ controls alternative activation and improves insulin resistance , 2007, Nature.

[49]  M. Block,et al.  Microglia-mediated neurotoxicity: uncovering the molecular mechanisms , 2007, Nature Reviews Neuroscience.

[50]  J. Saavedra,et al.  Long-term angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARgamma. , 2006, European journal of pharmacology.

[51]  S. Kirincich,et al.  Molecular activation of PPARγ by angiotensin II type 1-receptor antagonists , 2006 .

[52]  Jian-Mei Li,et al.  Angiotensin II Type-2 Receptor Stimulation Prevents Neural Damage by Transcriptional Activation of Methyl Methanesulfonate Sensitive 2 , 2006, Hypertension.

[53]  S. Kirincich,et al.  Molecular activation of PPARgamma by angiotensin II type 1-receptor antagonists. , 2006, Vascular pharmacology.

[54]  Jing Chen,et al.  Exaggerated neuroinflammation and sickness behavior in aged mice after activation of the peripheral innate immune system , 2005 .

[55]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[56]  Jérôme Boudeau,et al.  LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR‐1 , 2004, The EMBO journal.

[57]  B. Viollet,et al.  5-Aminoimidazole-4-Carboxamide-1-β-4-Ribofuranoside Inhibits Proinflammatory Response in Glial Cells: A Possible Role of AMP-Activated Protein Kinase , 2004, The Journal of Neuroscience.

[58]  B. Suresh,et al.  Differential anxiolytic effect of enalapril and losartan in normotensive and renal hypertensive rats , 2003, Physiology & Behavior.

[59]  T. Leff AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins. , 2001, Biochemical Society transactions.

[60]  R. Dantzer,et al.  How the immune and nervous systems interact during disease-associated anorexia. , 2001, Nutrition.