Variable-composition structural optimization and experimental verification of MnB3 and MnB4.

In combination with variable-composition evolutionary algorithm calculations and first-principles calculations, we have systematically searched for all the stable compounds and their crystal structures in the extensively investigated binary Mn-B system. Our results have uncovered four viable ground-state compounds, with Mn2B, MnB, and MnB4, and previously never reported MnB3 and two metastable compounds, MnB2 and Mn3B4. Our calculations demonstrate that the early characterized mC10 structure of MnB4 showed dynamic instability with large imaginary phonon frequencies and, instead, a new mP20 structure is predicted to be stable both dynamically and thermodynamically, with a considerable energy gain and no imaginary phonon frequencies. The new MnB3 compound crystallizes in the monoclinic mC16 structure which lies 3.2 meV per atom below the MnB (oP8) ↔ MnB4 (mP20) tie-line at T = 0 K. Furthermore, these proposed phases have been verified by our annealed samples after arc-melting synthesis and corresponding powder XRD measurements.

[1]  Richard B. Kaner,et al.  Tungsten tetraboride, an inexpensive superhard material , 2011, Proceedings of the National Academy of Sciences.

[2]  Jinlei Yao,et al.  Structural distortion and band gap opening of hard MnB{sub 4} in comparison with CrB{sub 4} and FeB{sub 4} , 2014 .

[3]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[4]  Takashi Miyake,et al.  Body-centered tetragonal C4: a viable sp3 carbon allotrope. , 2010, Physical review letters.

[5]  How to get superhard MnB2: a first-principles study , 2012 .

[6]  D. Pettifor,et al.  The calculated electronic and structural properties of the transition-metal monoborides , 1988 .

[7]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[8]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[9]  Lars-Erik Tergenius Refinement of the crystal structure of orthorhombic Mn2B (formerly denoted Mn4B) , 1981 .

[10]  R. Kaner,et al.  Preparation and properties of metallic, superhard rhenium diboride crystals. , 2008, Journal of the American Chemical Society.

[11]  Dianzhong Li,et al.  Structure, bonding, and possible superhardness of CrB4 , 2012 .

[12]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[13]  Dianzhong Li,et al.  Modeling hardness of polycrystalline materials and bulk metallic glasses , 2011 .

[14]  A N Kolmogorov,et al.  Pressure-driven evolution of the covalent network in CaB6. , 2012, Physical review letters.

[15]  T. Kanaizuka Phase diagram of pseudobinary CrBMnB and MnBFeB systems: Crystal structure of the low-temperature modification of FeB , 1982 .

[16]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[17]  Bin Xu,et al.  First-principles calculations of MnB4, TcB4, and ReB4 with the MnB4-type structure , 2012 .

[18]  L. Dubrovinsky,et al.  Stability of MnB2 with AlB2-type structure revealed by first-principles calculations and experiments , 2013 .

[19]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[20]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[21]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[22]  R. Kießling,et al.  The Borides of Manganese. , 1950 .

[23]  S. Aydin,et al.  First-principles calculations of MnB 2 , TcB 2 , and ReB 2 within the ReB 2 -type structure , 2009 .

[24]  G. S. Painter,et al.  Electronic and structural origin of ultraincompressibility of 5d transition-metal diborides MB(2) (M=W, Re, Os). , 2008, Physical review letters.

[25]  T. Cui,et al.  Manganese borides synthesized at high pressure and high temperature , 2012 .

[26]  Jirí Vackár,et al.  Hardness of covalent and ionic crystals: first-principle calculations. , 2006, Physical review letters.

[27]  Walter Steurer,et al.  Transition Metal Borides: Superhard versus Ultra‐incompressible , 2008 .

[28]  G. Will,et al.  Electron Deformation Density in Rhombohedral α‐Boron , 2001 .

[29]  Lijun Meng,et al.  Structural phase transitions of FeCo and FeNi nanoparticles: A molecular dynamics study , 2012 .

[30]  K. E. Spear,et al.  The B−Mn (Boron-Manganese) system , 1986 .

[31]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[32]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[33]  H. Nowotny,et al.  Untersuchungen in den systemen: Chrom-Bor-Kohlenstoff, Mangan-Bor-Kohlenstoff und Mangan-Germanium-Kohlenstoff , 1973 .

[34]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[35]  A. C. Lawson,et al.  Magnetic and crystallographic order in α‐manganese , 1994 .

[36]  Fangfang Zhang,et al.  Electronegativity identification of novel superhard materials. , 2008, Physical review letters.

[37]  W. J. Orville-Thomas Atoms in Molecules — a Quantum Theory , 1996 .

[38]  R. Seshadri,et al.  Peierls-distorted monoclinic MnB(4) with a Mn-Mn bond. , 2014, Angewandte Chemie.

[39]  S. Rundqvist,et al.  A Note on the Compositions and Crystal Structures of MnB2, Mn3Si, Mn5Si3, and FeSi2. , 1960 .

[40]  Siyuan Zhang,et al.  Hardness of covalent crystals. , 2003, Physical review letters.

[41]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[42]  Dianzhong Li,et al.  Hardness of T-carbon: Density functional theory calculations , 2011, 1108.2570.

[43]  A. N. Kolmogorov,et al.  Stability of 41 metal - boron systems at 0 GPa and 30 GPa from first principles , 2013, 1310.4157.

[44]  S. Tolbert,et al.  Toward inexpensive superhard materials: tungsten tetraboride-based solid solutions. , 2012, Journal of the American Chemical Society.

[45]  Richard B. Kaner,et al.  Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure , 2007, Science.

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[48]  A. N. Kolmogorov,et al.  Possible routes for synthesis of new boron-rich Fe–B and Fe1−xCrxB4 compounds , 2011, 1104.2136.

[49]  N. A. Sörensen,et al.  The Crystal Structure of MnB4. , 1970 .

[50]  Dianzhong Li,et al.  Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion , 2012, Scientific Reports.

[51]  Gerbrand Ceder,et al.  Opportunities and challenges for first-principles materials design and applications to Li battery materials , 2010 .

[52]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[53]  A N Kolmogorov,et al.  New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. , 2010, Physical review letters.

[54]  Gustaaf Van Tendeloo,et al.  Discovery of a superhard iron tetraboride superconductor. , 2013, Physical review letters.

[55]  Shibing Wang,et al.  Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. , 2012, Physical review letters.

[56]  Zhiping Li,et al.  Unusual rigidity and ideal strength of CrB4 and MnB4 , 2012 .

[57]  S. Tolbert,et al.  Advancements in the Search for Superhard Ultra‐Incompressible Metal Borides , 2009 .

[58]  E. Diczfalusy,et al.  The Effect of Boron on the Formation of sigma-FeCr at 700 degrees C. , 1958 .

[59]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[60]  Sergey V. Ovsyannikov,et al.  Peierls distortion, magnetism, and high hardness of manganese tetraboride , 2014 .

[61]  Mario Valle,et al.  Evolutionary Crystal Structure Prediction as a Method for the Discovery of Minerals and Materials , 2010 .

[62]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[63]  H. Niu,et al.  Interstitial-boron solution strengthened WB3+x , 2013, 1309.2575.

[64]  Stefano Curtarolo,et al.  A search model for topological insulators with high-throughput robustness descriptors. , 2012, Nature materials.

[65]  A. L. Ivanovskii,et al.  Mechanical and electronic properties of diborides of transition 3d–5d metals from first principles: Toward search of novel ultra-incompressible and superhard materials , 2012 .