Variable-composition structural optimization and experimental verification of MnB3 and MnB4.
暂无分享,去创建一个
Qiang Zhu | Dianzhong Li | Yiyi Li | Artem R Oganov | H. Niu | A. Oganov | Yiyi Li | Dianzhong Li | Weijun Ren | Haiyang Niu | Xing-Qiu Chen | Weijun Ren | Xing-Qiu Chen | Q. Zhu
[1] Richard B. Kaner,et al. Tungsten tetraboride, an inexpensive superhard material , 2011, Proceedings of the National Academy of Sciences.
[2] Jinlei Yao,et al. Structural distortion and band gap opening of hard MnB{sub 4} in comparison with CrB{sub 4} and FeB{sub 4} , 2014 .
[3] S. H. Vosko,et al. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .
[4] Takashi Miyake,et al. Body-centered tetragonal C4: a viable sp3 carbon allotrope. , 2010, Physical review letters.
[5] How to get superhard MnB2: a first-principles study , 2012 .
[6] D. Pettifor,et al. The calculated electronic and structural properties of the transition-metal monoborides , 1988 .
[7] R. Hill. The Elastic Behaviour of a Crystalline Aggregate , 1952 .
[8] 宁北芳,et al. 疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .
[9] Lars-Erik Tergenius. Refinement of the crystal structure of orthorhombic Mn2B (formerly denoted Mn4B) , 1981 .
[10] R. Kaner,et al. Preparation and properties of metallic, superhard rhenium diboride crystals. , 2008, Journal of the American Chemical Society.
[11] Dianzhong Li,et al. Structure, bonding, and possible superhardness of CrB4 , 2012 .
[12] Isao Tanaka,et al. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .
[13] Dianzhong Li,et al. Modeling hardness of polycrystalline materials and bulk metallic glasses , 2011 .
[14] A N Kolmogorov,et al. Pressure-driven evolution of the covalent network in CaB6. , 2012, Physical review letters.
[15] T. Kanaizuka. Phase diagram of pseudobinary CrBMnB and MnBFeB systems: Crystal structure of the low-temperature modification of FeB , 1982 .
[16] A. Oganov,et al. How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.
[17] Bin Xu,et al. First-principles calculations of MnB4, TcB4, and ReB4 with the MnB4-type structure , 2012 .
[18] L. Dubrovinsky,et al. Stability of MnB2 with AlB2-type structure revealed by first-principles calculations and experiments , 2013 .
[19] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[20] Qiang Zhu,et al. New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..
[21] Siegfried Schmauder,et al. Comput. Mater. Sci. , 1998 .
[22] R. Kießling,et al. The Borides of Manganese. , 1950 .
[23] S. Aydin,et al. First-principles calculations of MnB 2 , TcB 2 , and ReB 2 within the ReB 2 -type structure , 2009 .
[24] G. S. Painter,et al. Electronic and structural origin of ultraincompressibility of 5d transition-metal diborides MB(2) (M=W, Re, Os). , 2008, Physical review letters.
[25] T. Cui,et al. Manganese borides synthesized at high pressure and high temperature , 2012 .
[26] Jirí Vackár,et al. Hardness of covalent and ionic crystals: first-principle calculations. , 2006, Physical review letters.
[27] Walter Steurer,et al. Transition Metal Borides: Superhard versus Ultra‐incompressible , 2008 .
[28] G. Will,et al. Electron Deformation Density in Rhombohedral α‐Boron , 2001 .
[29] Lijun Meng,et al. Structural phase transitions of FeCo and FeNi nanoparticles: A molecular dynamics study , 2012 .
[30] K. E. Spear,et al. The B−Mn (Boron-Manganese) system , 1986 .
[31] S. Curtarolo,et al. AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.
[32] A. Oganov,et al. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.
[33] H. Nowotny,et al. Untersuchungen in den systemen: Chrom-Bor-Kohlenstoff, Mangan-Bor-Kohlenstoff und Mangan-Germanium-Kohlenstoff , 1973 .
[34] S. Pugh. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .
[35] A. C. Lawson,et al. Magnetic and crystallographic order in α‐manganese , 1994 .
[36] Fangfang Zhang,et al. Electronegativity identification of novel superhard materials. , 2008, Physical review letters.
[37] W. J. Orville-Thomas. Atoms in Molecules — a Quantum Theory , 1996 .
[38] R. Seshadri,et al. Peierls-distorted monoclinic MnB(4) with a Mn-Mn bond. , 2014, Angewandte Chemie.
[39] S. Rundqvist,et al. A Note on the Compositions and Crystal Structures of MnB2, Mn3Si, Mn5Si3, and FeSi2. , 1960 .
[40] Siyuan Zhang,et al. Hardness of covalent crystals. , 2003, Physical review letters.
[41] R. I. Taylor,et al. A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .
[42] Dianzhong Li,et al. Hardness of T-carbon: Density functional theory calculations , 2011, 1108.2570.
[43] A. N. Kolmogorov,et al. Stability of 41 metal - boron systems at 0 GPa and 30 GPa from first principles , 2013, 1310.4157.
[44] S. Tolbert,et al. Toward inexpensive superhard materials: tungsten tetraboride-based solid solutions. , 2012, Journal of the American Chemical Society.
[45] Richard B. Kaner,et al. Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure , 2007, Science.
[46] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[47] Yanming Ma,et al. Ionic high-pressure form of elemental boron , 2009, Nature.
[48] A. N. Kolmogorov,et al. Possible routes for synthesis of new boron-rich Fe–B and Fe1−xCrxB4 compounds , 2011, 1104.2136.
[49] N. A. Sörensen,et al. The Crystal Structure of MnB4. , 1970 .
[50] Dianzhong Li,et al. Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion , 2012, Scientific Reports.
[51] Gerbrand Ceder,et al. Opportunities and challenges for first-principles materials design and applications to Li battery materials , 2010 .
[52] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[53] A N Kolmogorov,et al. New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. , 2010, Physical review letters.
[54] Gustaaf Van Tendeloo,et al. Discovery of a superhard iron tetraboride superconductor. , 2013, Physical review letters.
[55] Shibing Wang,et al. Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. , 2012, Physical review letters.
[56] Zhiping Li,et al. Unusual rigidity and ideal strength of CrB4 and MnB4 , 2012 .
[57] S. Tolbert,et al. Advancements in the Search for Superhard Ultra‐Incompressible Metal Borides , 2009 .
[58] E. Diczfalusy,et al. The Effect of Boron on the Formation of sigma-FeCr at 700 degrees C. , 1958 .
[59] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[60] Sergey V. Ovsyannikov,et al. Peierls distortion, magnetism, and high hardness of manganese tetraboride , 2014 .
[61] Mario Valle,et al. Evolutionary Crystal Structure Prediction as a Method for the Discovery of Minerals and Materials , 2010 .
[62] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[63] H. Niu,et al. Interstitial-boron solution strengthened WB3+x , 2013, 1309.2575.
[64] Stefano Curtarolo,et al. A search model for topological insulators with high-throughput robustness descriptors. , 2012, Nature materials.
[65] A. L. Ivanovskii,et al. Mechanical and electronic properties of diborides of transition 3d–5d metals from first principles: Toward search of novel ultra-incompressible and superhard materials , 2012 .