Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin hydrogels.

Native mucus is polymer-based soft-matter material of paramount biological importance. How non-Gaussian and non-ergodic is the diffusive spreading of pathogens in mucus? We study the passive, thermally driven motion of micron-sized tracers in hydrogels of mucins, the main polymeric component of mucus. We report the results of the Bayesian analysis for ranking several diffusion models for a set of tracer trajectories [C. E. Wagner et al., Biomacromolecules, 2017, 18, 3654]. The models with "diffusing diffusivity", fractional and standard Brownian motion are used. The likelihood functions and evidences of each model are computed, ranking the significance of each model for individual traces. We find that viscoelastic anomalous diffusion is often most probable, followed by Brownian motion, while the model with a diffusing diffusion coefficient is only realised rarely. Our analysis also clarifies the distribution of time-averaged displacements, correlations of scaling exponents and diffusion coefficients, and the degree of non-Gaussianity of displacements at varying pH levels. Weak ergodicity breaking is also quantified. We conclude that-consistent with the original study-diffusion of tracers in the mucin gels is most non-Gaussian and non-ergodic at low pH that corresponds to the most heterogeneous networks. Using the Bayesian approach with the nested-sampling algorithm, together with the quantitative analysis of multiple statistical measures, we report new insights into possible physical mechanisms of diffusion in mucin gels.

[1]  I. Hanasaki,et al.  Characterization of aqueous cellulose nanofiber dispersions from microscopy movie data of Brownian particles by trajectory analysis , 2018, Nanoscale advances.

[2]  Andrey G. Cherstvy,et al.  Bayesian analysis of single-particle tracking data using the nested-sampling algorithm: maximum-likelihood model selection applied to stochastic-diffusivity data. , 2018, Physical chemistry chemical physics : PCCP.

[3]  M. Brenner,et al.  Enhanced diffusion by binding to the crosslinks of a polymer gel , 2018, Nature Communications.

[4]  Asmaa A. Sadoon,et al.  Anomalous, non-Gaussian, viscoelastic, and age-dependent dynamics of histonelike nucleoid-structuring proteins in live Escherichia coli , 2018, Physical Review E.

[5]  K. Ribbeck,et al.  Mucins and Their Role in Shaping the Functions of Mucus Barriers. , 2018, Annual review of cell and developmental biology.

[6]  Hiroki Yamaguchi,et al.  Estimation of diffusive states from single-particle trajectory in heterogeneous medium using machine-learning methods. , 2018, Physical chemistry chemical physics : PCCP.

[7]  R. Netz,et al.  Hydrodynamic Effects on Particle Diffusion in Polymeric Hydrogels with Steric and Electrostatic Particle–Gel Interactions , 2018, Macromolecules.

[8]  Andrey G. Cherstvy,et al.  Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells. , 2018, Physical chemistry chemical physics : PCCP.

[9]  Andrey G. Cherstvy,et al.  Biased continuous-time random walks for ordinary and equilibrium cases: facilitation of diffusion, ergodicity breaking and ageing. , 2018, Physical chemistry chemical physics : PCCP.

[10]  Andrey G. Cherstvy,et al.  Time averages and their statistical variation for the Ornstein-Uhlenbeck process: Role of initial particle distributions and relaxation to stationarity. , 2018, Physical review. E.

[11]  Jacob Witten,et al.  Selective permeability of mucus barriers. , 2018, Current opinion in biotechnology.

[12]  M. Weiss,et al.  Anomalous dynamics of the endoplasmic reticulum network. , 2018, Physical review. E.

[13]  Dylan C Young,et al.  Optimizing likelihood models for particle trajectory segmentation in multi-state systems , 2018, Physical biology.

[14]  Maxime Dahan,et al.  Non-specific interactions govern cytosolic diffusion of nanosized objects in mammalian cells , 2018, Nature Materials.

[15]  J. Duke,et al.  Particle Diffusion in Polymeric Hydrogels with Mixed Attractive and Repulsive Interactions. , 2018, Nano letters.

[16]  A. Thorell,et al.  Influence of the viscosity of healthy and diseased human mucins on the motility of Helicobacter pylori , 2018, Scientific Reports.

[17]  J. Szwabiński,et al.  Detection of ε-ergodicity breaking in experimental data-A study of the dynamical functional sensibility. , 2018, The Journal of chemical physics.

[18]  Zhen Tong,et al.  Colloidal probe dynamics in gelatin solution during the sol-gel transition. , 2018, Soft matter.

[19]  B. Fabry,et al.  Bayesian model selection for complex dynamic systems , 2018, Nature Communications.

[20]  F. Seno,et al.  Random diffusivity from stochastic equations: comparison of two models for Brownian yet non-Gaussian diffusion , 2018, 1811.09531.

[21]  Frederik W. Lund,et al.  Bayesian model selection with fractional Brownian motion , 2018, Journal of Statistical Mechanics: Theory and Experiment.

[22]  R. Winkler,et al.  Time-resolved structural evolution during the collapse of responsive hydrogels: The microgel-to-particle transition , 2018, Science Advances.

[23]  M Gregory Forest,et al.  Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D , 2017, Proceedings of the National Academy of Sciences.

[24]  C. Wagner Micro- and macro-rheological studies of the structure and association dynamics of biopolymer gels , 2018 .

[25]  RalfMetzler,et al.  Superstatistical generalised Langevin equation : non-Gaussian viscoelastic anomalous diffusion , 2018 .

[26]  Jae-Hyung Jeon,et al.  Neuronal messenger ribonucleoprotein transport follows an aging Lévy walk , 2018, Nature Communications.

[27]  M. Magdziarz,et al.  Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion , 2017, 1710.02222.

[28]  L. Cipelletti,et al.  Mucus as an Arrested Phase Separation Gel , 2017 .

[29]  K. Ribbeck,et al.  A Rheological Study of the Association and Dynamics of MUC5AC Gels. , 2017, Biomacromolecules.

[30]  K. Ribbeck,et al.  Probing the potential of mucus permeability to signify preterm birth risk , 2017, Scientific Reports.

[31]  M. A. Lomholt,et al.  Bayesian inference with information content model check for Langevin equations. , 2017, Physical review. E.

[32]  P. Polanowski,et al.  Diffusion of small particles in polymer films. , 2017, The Journal of chemical physics.

[33]  S. B. Yuste,et al.  Continuous-time random-walk model for anomalous diffusion in expanding media. , 2017, Physical review. E.

[34]  Eilon Sherman,et al.  Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane , 2017, Nature Communications.

[35]  A. Godec,et al.  Quantifying non-ergodicity of anomalous diffusion with higher order moments , 2017, Scientific Reports.

[36]  Katharina Ribbeck,et al.  The particle in the spider's web: transport through biological hydrogels. , 2017, Nanoscale.

[37]  Rohit Jain,et al.  Lévy flight with absorption: A model for diffusing diffusivity with long tails. , 2017, Physical review. E.

[38]  D. Krapf,et al.  Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Meshwork , 2017, Physical review. X.

[39]  Paul A. Wiggins,et al.  Cytoplasmic RNA-Protein Particles Exhibit Non-Gaussian Subdiffusive Behavior. , 2017, Biophysical journal.

[40]  C. Dispenza,et al.  Biodistribution of Insulin-Nanogels in Mouse: A Preliminary Study for the Treatment of Alzheimer's Disease , 2017 .

[41]  R. Metzler,et al.  Manipulation and Motion of Organelles and Single Molecules in Living Cells. , 2017, Chemical reviews.

[42]  Alexandra Kroll,et al.  Classification and Segmentation of Nanoparticle Diffusion Trajectories in Cellular Micro Environments , 2017, PloS one.

[43]  M. Sansom,et al.  Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity , 2017, Science Advances.

[44]  I. M. Sokolov,et al.  Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities , 2016, 1611.06202.

[45]  Andrey G. Cherstvy,et al.  Non-Brownian diffusion in lipid membranes: Experiments and simulations. , 2016, Biochimica et biophysica acta.

[46]  Andrey G. Cherstvy,et al.  Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes. , 2016, Physical chemistry chemical physics : PCCP.

[47]  K. L. Sebastian,et al.  Diffusion in a Crowded, Rearranging Environment. , 2016, The journal of physical chemistry. B.

[48]  R. Metzler,et al.  Protein Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous Lateral Diffusion of Phospholipids and Proteins , 2016 .

[49]  Scott A. McKinley,et al.  Maximum likelihood estimation for single particle, passive microrheology data with drift , 2015, 1509.03261.

[50]  Andrey G. Cherstvy,et al.  Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments , 2015, 1508.02029.

[51]  M. Garcia-Parajo,et al.  A review of progress in single particle tracking: from methods to biophysical insights , 2015, Reports on progress in physics. Physical Society.

[52]  Barbara A. Bailey,et al.  Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters , 2015, Proceedings of the National Academy of Sciences.

[53]  J. Rommens,et al.  Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis , 2015, Nature Communications.

[54]  Andrey G. Cherstvy,et al.  Quantifying the non-ergodicity of scaled Brownian motion , 2015, Journal of Physics A: Mathematical and Theoretical.

[55]  R. Metzler,et al.  Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii , 2015, Scientific Reports.

[56]  Franz Stadler,et al.  Superstatistical analysis and modelling of heterogeneous random walks , 2015, Nature Communications.

[57]  Krzysztof Burnecki,et al.  Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach , 2015, Scientific Reports.

[58]  Igor M. Sokolov,et al.  A toolbox for determining subdiffusive mechanisms , 2015 .

[59]  Calvin C. Moore,et al.  Ergodic theorem, ergodic theory, and statistical mechanics , 2015, Proceedings of the National Academy of Sciences.

[60]  Andrey G. Cherstvy,et al.  Ergodicity breaking, ageing, and confinement in generalized diffusion processes with position and time dependent diffusivity , 2015, 1502.01554.

[61]  M. P. Stoykovich,et al.  Nanoscale topography influences polymer surface diffusion. , 2015, ACS nano.

[62]  M. Rubinstein,et al.  Hopping Diffusion of Nanoparticles in Polymer Matrices , 2015, Macromolecules.

[63]  D. K. Schwartz,et al.  Tracking Nanoparticle Diffusion in Porous Filtration Media , 2015 .

[64]  K. Ribbeck,et al.  Salivary mucins in host defense and disease prevention , 2015, Journal of oral microbiology.

[65]  Andrey G. Cherstvy,et al.  Non-universal tracer diffusion in crowded media of non-inert obstacles. , 2014, Physical chemistry chemical physics : PCCP.

[66]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[67]  Scott A. McKinley,et al.  Micro-heterogeneity metrics for diffusion in soft matter. , 2014, Soft matter.

[68]  F. Lagarce,et al.  Mucus models to evaluate nanomedicines for diffusion. , 2014, Drug discovery today.

[69]  Andrey G. Cherstvy,et al.  Electrostatic effect of H1-histone protein binding on nucleosome repeat length , 2014, Physical biology.

[70]  Scott A. McKinley,et al.  Model Comparison and Assessment for Single Particle Tracking in Biological Fluids , 2014, 1407.5962.

[71]  Gary W Slater,et al.  Diffusing diffusivity: a model for anomalous, yet Brownian, diffusion. , 2014, Physical review letters.

[72]  Andrey G. Cherstvy,et al.  Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  S. Granick,et al.  Even hard-sphere colloidal suspensions display Fickian yet non-Gaussian diffusion. , 2014, ACS nano.

[74]  G. Grest,et al.  Nanoparticle diffusion in polymer nanocomposites. , 2014, Physical review letters.

[75]  Scott A. McKinley,et al.  A Biophysical Basis for Mucus Solids Concentration as a Candidate Biomarker for Airways Disease , 2014, PloS one.

[76]  Ivana V. Yang,et al.  Muc5b is required for airway defence , 2013, Nature.

[77]  Christian L. Vestergaard,et al.  Optimal estimation of diffusion coefficients from single-particle trajectories. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  Andrey G. Cherstvy,et al.  Sensing viruses by mechanical tension of DNA in responsive hydrogels , 2013, 1310.5531.

[79]  R. Metzler,et al.  Aging renewal theory and application to random walks , 2013, 1310.1058.

[80]  M. Kurisawa,et al.  Injectable biodegradable hydrogels: progress and challenges. , 2013, Journal of materials chemistry. B.

[81]  Andrey G. Cherstvy,et al.  Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. , 2013, Physical chemistry chemical physics : PCCP.

[82]  P. Salamon,et al.  Bacteriophage adhering to mucus provide a non–host-derived immunity , 2013, Proceedings of the National Academy of Sciences.

[83]  M. L. Hartung,et al.  Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori , 2013, Nature Reviews Microbiology.

[84]  G. Woodworth,et al.  Nanoparticle diffusion in respiratory mucus from humans without lung disease. , 2013, Biomaterials.

[85]  R. Metzler,et al.  Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions , 2013 .

[86]  Andrey G. Cherstvy,et al.  Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes , 2013, 1303.5533.

[87]  Daphne Weihs,et al.  Particle tracking in living cells: a review of the mean square displacement method and beyond , 2013, Rheologica Acta.

[88]  M. Johansson,et al.  The gastrointestinal mucus system in health and disease , 2013, Nature Reviews Gastroenterology &Hepatology.

[89]  T. Franosch,et al.  Anomalous transport in the crowded world of biological cells , 2013, Reports on progress in physics. Physical Society.

[90]  R. Metzler,et al.  Aging effects and population splitting in single-particle trajectory averages. , 2013, Physical review letters.

[91]  Krzysztof Burnecki,et al.  Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion. , 2012, Biophysical journal.

[92]  D. Hill,et al.  A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia , 2012, Science.

[93]  Igor M. Sokolov,et al.  Models of anomalous diffusion in crowded environments , 2012 .

[94]  Jun He,et al.  Bayesian approach to MSD-based analysis of particle motion in live cells. , 2012, Biophysical journal.

[95]  Benjamin C. Tang,et al.  Mucus-Penetrating Nanoparticles for Vaginal Drug Delivery Protect Against Herpes Simplex Virus , 2012, Science Translational Medicine.

[96]  Sung Chul Bae,et al.  When Brownian diffusion is not Gaussian. , 2012, Nature Materials.

[97]  Oliver Lieleg,et al.  Mucin biopolymers as broad-spectrum antiviral agents. , 2012, Biomacromolecules.

[98]  D. Grebenkov,et al.  Time-averaged MSD of Brownian motion , 2012, 1205.2100.

[99]  X. Michalet,et al.  Optimal diffusion coefficient estimation in single-particle tracking. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  K. Schweizer,et al.  Theory of nanoparticle diffusion in unentangled and entangled polymer melts. , 2011, The Journal of chemical physics.

[101]  U. Toussaint,et al.  Bayesian inference in physics , 2011 .

[102]  M. Rubinstein,et al.  Mobility of Nonsticky Nanoparticles in Polymer Liquids. , 2011, Macromolecules.

[103]  K. Ribbeck,et al.  Biological hydrogels as selective diffusion barriers. , 2011, Trends in cell biology.

[104]  Aubrey V. Weigel,et al.  Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking , 2011, Proceedings of the National Academy of Sciences.

[105]  Philip Sutton,et al.  Mucin dynamics and enteric pathogens , 2011, Nature Reviews Microbiology.

[106]  Daisuke Mizuno,et al.  Non-Gaussian athermal fluctuations in active gels , 2011 .

[107]  R. Trotta,et al.  CONSTRAINTS ON COSMIC-RAY PROPAGATION MODELS FROM A GLOBAL BAYESIAN ANALYSIS , 2010, 1011.0037.

[108]  R. Metzler,et al.  In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. , 2010, Physical review letters.

[109]  Ralf Metzler,et al.  Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. , 2010, Physical chemistry chemical physics : PCCP.

[110]  R. Carrier,et al.  Barrier properties of gastrointestinal mucus to nanoparticle transport. , 2010, Macromolecular bioscience.

[111]  X. Michalet Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  K. Ribbeck,et al.  Characterization of particle translocation through mucin hydrogels. , 2010, Biophysical journal.

[113]  Samuel K. Lai,et al.  Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses , 2009, Proceedings of the National Academy of Sciences.

[114]  Sung Chul Bae,et al.  Anomalous yet Brownian , 2009, Proceedings of the National Academy of Sciences.

[115]  Bradley S. Turner,et al.  Helicobacter pylori moves through mucus by reducing mucin viscoelasticity , 2009, Proceedings of the National Academy of Sciences.

[116]  Denis Wirtz,et al.  Particle-tracking microrheology of living cells: principles and applications. , 2009, Annual review of biophysics.

[117]  J. Hanes,et al.  Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. , 2009, Advanced drug delivery reviews.

[118]  R. Cone,et al.  Barrier properties of mucus. , 2009, Advanced drug delivery reviews.

[119]  Denis Wirtz,et al.  Micro- and macrorheology of mucus. , 2009, Advanced drug delivery reviews.

[120]  E. Barkai,et al.  Ergodic properties of fractional Brownian-Langevin motion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[121]  Iain M Young,et al.  Anomalous diffusion of heterogeneous populations characterized by normal diffusion at the individual level , 2009, Journal of The Royal Society Interface.

[122]  R. Metzler,et al.  Random time-scale invariant diffusion and transport coefficients. , 2008, Physical review letters.

[123]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[124]  M. McGuckin,et al.  Structure and function of the polymeric mucins in airways mucus. , 2008, Annual review of physiology.

[125]  M. Vingerhoeds,et al.  Saliva as research material: biochemical, physicochemical and practical aspects. , 2007, Archives of oral biology.

[126]  Andrey G. Cherstvy Effect of a low-dielectric interior on DNA electrostatic response to twisting and bending. , 2007, The journal of physical chemistry. B.

[127]  Justin Hanes,et al.  Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus , 2007, Proceedings of the National Academy of Sciences.

[128]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[129]  Russell M. Taylor,et al.  A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms , 2006, Proceedings of the National Academy of Sciences.

[130]  Haw Yang,et al.  Quantitative characterization of changes in dynamical behavior for single-particle tracking studies. , 2006, Journal of Physical Chemistry B.

[131]  C. Beck Superstatistical brownian motion , 2005, cond-mat/0508263.

[132]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[133]  T. Waigh Microrheology of complex fluids , 2005 .

[134]  P. Doyle,et al.  Static and dynamic errors in particle tracking microrheology. , 2005, Biophysical journal.

[135]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[136]  D. Reichman,et al.  Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. , 2004, Physical review letters.

[137]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[138]  V. Dose Bayesian inference in physics: case studies , 2003 .

[139]  G. D'Agostini,et al.  Bayesian inference in processing experimental data: principles and basic applications , 2003, physics/0304102.

[140]  E. T. Jaynes,et al.  Probability Theory: Author index , 2003 .

[141]  J. Käs,et al.  Apparent subdiffusion inherent to single particle tracking. , 2002, Biophysical journal.

[142]  T. Hardingham,et al.  Concentrated solutions of salivary MUC5B mucin do not replicate the gel-forming properties of saliva. , 2002, The Biochemical journal.

[143]  D. Weitz,et al.  Subdiffusion and the cage effect studied near the colloidal glass transition , 2001, cond-mat/0111073.

[144]  D. Weitz,et al.  Properties of cage rearrangements observed near the colloidal glass transition. , 2001, Physical review letters.

[145]  D A Weitz,et al.  Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[146]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[147]  P. Artursson,et al.  Diffusion of drugs in native and purified gastrointestinal mucus. , 1997, Journal of pharmaceutical sciences.

[148]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[149]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[150]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[151]  J. Rudnick,et al.  The Shapes of Random Walks , 1987, Science.

[152]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[153]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[154]  Oliver Penrose,et al.  Modern ergodic theory , 1973 .

[155]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[156]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[157]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[158]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[159]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[160]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[161]  H. Jeffreys The Theory of Probability , 1896 .