Dynamics of microparticles trapped in a perfect vortex beam

We trap and rotate particles using a perfect vortex beam with integer or fractional topological charges. A linear relationship is observed between the rotation speed and orbital angular momentum content of the beam.

[1]  Simon Hanna,et al.  Orbital motion of optically trapped particles in Laguerre-Gaussian beams. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  B. A. Foreman,et al.  Wave function engineering and circulating spin current in trapped Bose-Einstein condensates , 2008 .

[3]  Stephen M. Barnett,et al.  Quantum formulation of fractional orbital angular momentum , 2006, quant-ph/0611169.

[4]  Miles J. Padgett,et al.  Optical tweezers and optical spanners with Laguerre-Gaussian modes , 1996 .

[5]  W Sibbett,et al.  Generation of multiple Bessel beams for a biophotonics workstation. , 2008, Optics express.

[6]  L C Andrews,et al.  Spot size and divergence for Laguerre Gaussian beams of any order. , 1983, Applied optics.

[7]  Yu. B. Ovchinnikov,et al.  Generation of a hollow laser beam for atom trapping using an axicon , 1998 .

[8]  K. Dholakia,et al.  In situ wavefront correction and its application to micromanipulation , 2010 .

[9]  P. Öhberg The atomic quantum ring , 2011 .

[10]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[11]  C Denz,et al.  Mathieu beams as versatile light moulds for 3D micro particle assemblies. , 2010, Optics express.

[12]  H. Niu,et al.  Fractional optical vortex beam induced rotation of particles. , 2005, Optics express.

[13]  K. Dholakia,et al.  Spatial transformation of Laguerre–Gaussian laser modes , 2001 .

[14]  Miles J. Padgett,et al.  Observation of the vortex structure of a non-integer vortex beam , 2004 .

[15]  V. Natarajan,et al.  Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap. , 2007, Physical review letters.

[16]  M J Padgett,et al.  Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. , 2003, Physical review letters.

[17]  Jiao Lin,et al.  Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams , 2006 .

[18]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[19]  Pierre Cladé,et al.  Quantized rotation of atoms from photons with orbital angular momentum. , 2006, Physical review letters.

[20]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[21]  K. Dholakia,et al.  Optical micromanipulation using supercontinuum Laguerre-Gaussian and Gaussian beams. , 2008, Optics express.

[22]  Carolina Rickenstorff-Parrao,et al.  Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator. , 2013, Optics letters.

[23]  K. Dholakia,et al.  Orbital angular momentum of a high-order Bessel light beam , 2002 .

[24]  David G Grier,et al.  Structure of optical vortices. , 2003, Physical review letters.