In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion

In this paper, the thermoelectric properties of In2O3-based materials in comparison with other thermoelectric materials are considered. It is shown that nanostructured In2O3 Sn-based oxides are promising for thermoelectric applications at moderate temperatures. Due to the nanostructure, specific surface properties of In2O3 and filtering effects, it is possible to significantly reduce the thermal conductivity and achieve an efficiency of thermoelectric conversion inaccessible to bulk materials. It is also shown that a specific surface state at the intergrain boundary, optimal for maximizing the filtering effect, can be achieved through (1) the engineering of grain boundary parameters, (2) controlling the composition of the surrounding atmosphere, and (3) selecting the appropriate operating temperature.

[1]  Ghenadii Korotcenkov,et al.  In2O3- and SnO2-based Ozone Sensors: Design and Characterization , 2018 .

[2]  M. Čeh,et al.  Structural features and thermoelectric properties of Al‐doped (ZnO)5In2O3 homologous phases , 2017 .

[3]  E. Guilmeau,et al.  Phase formation, microstructure development and thermoelectric properties of (ZnO)kIn2O3 ceramics , 2017 .

[4]  Jin-seong Park,et al.  Studies of thermoelectric transport properties of atomic layer deposited gallium-doped ZnO , 2017 .

[5]  Matti Lehtonen,et al.  Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves , 2017, Renewable and Sustainable Energy Reviews.

[6]  Bill J. Van Heyst,et al.  A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges , 2017 .

[7]  G. Korotcenkov,et al.  Interference effects between hydrogen and ozone in the response of SnO2-based gas sensors , 2017 .

[8]  Mingjie Guan,et al.  Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes , 2017 .

[9]  A. Tiwari,et al.  Recent advances in oxide thermoelectric materials and modules , 2017 .

[10]  Yoshikazu Suzuki,et al.  Synthesis and thermoelectric properties of composite oxides in the pseudobinary system ZnO-Ga2O3 , 2017 .

[11]  G. Korotcenkov,et al.  Ultra-low thermal conductivity of nanogranular indium tin oxide films deposited by spray pyrolysis , 2017, 1702.03842.

[12]  M. S. Naghavi,et al.  Thermal and electrical performance of a hybrid design of a solar-thermoelectric system , 2017 .

[13]  O. Lebedev,et al.  Inversion Boundaries and Phonon Scattering in Ga:ZnO Thermoelectric Compounds. , 2017, Inorganic chemistry.

[14]  G. Korotcenkov,et al.  Nanoscaled In2O3:Sn films as material for thermoelectric conversion: achievements and limitations , 2016, Bulletin of Materials Science.

[15]  G. Korotcenkov,et al.  Thermoelectric properties of nano-granular indium–tin-oxide within modified electron filtering model with chemisorption-type potential barriers , 2016 .

[16]  Xin Liang Thermoelectric transport properties of naturally nanostructured Ga–ZnO ceramics: Effect of point defect and interfaces , 2016 .

[17]  W. Tremel,et al.  A chemists view: Metal oxides with adaptive structures for thermoelectric applications , 2016 .

[18]  G. Korotcenkov,et al.  In2O3-based multicomponent metal oxide films and their prospects for thermoelectric applications , 2016 .

[19]  Boping Zhang,et al.  Enhanced Al/Ni co-doping and power factor in textured ZnO thermoelectric ceramics prepared by hydrothermal synthesis and spark plasma sintering , 2016 .

[20]  Xin Liang Remarkable enhancement in the Kapitza resistance and electron potential barrier of chemically modified In2O3(ZnO)9 natural superlattice interfaces. , 2015, Physical chemistry chemical physics : PCCP.

[21]  R. Donelson,et al.  Enhancement of thermoelectric properties in Sn doped (In0.95Lu0.05)2O3 , 2015 .

[22]  A. Balandin,et al.  Strongly Anisotropic Thermal Conductivity of Free‐Standing Reduced Graphene Oxide Films Annealed at High Temperature , 2015 .

[23]  W. Xu,et al.  Enhanced thermoelectric properties of Ga-doped In2O3 ceramics via synergistic band gap engineering and phonon suppression. , 2015, Physical chemistry chemical physics : PCCP.

[24]  Xin Liang Thermoelectric Transport Properties of Fe-Enriched ZnO with High-Temperature Nanostructure Refinement. , 2015, ACS applied materials & interfaces.

[25]  Kun Li,et al.  Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3 , 2015 .

[26]  Yuanhua Lin,et al.  Enhanced thermoelectric performance of In2O3-based ceramics via Nanostructuring and Point Defect Engineering , 2015, Scientific Reports.

[27]  G. Korotcenkov,et al.  In2O3-Based Thin Films Deposited by Spray Pyrolysis as Promising Thermoelectric Material , 2014 .

[28]  Ce-Wen Nan,et al.  BiCuSeO oxyselenides: new promising thermoelectric materials , 2014 .

[29]  T. Grande,et al.  Solid solubility of rare earth elements (Nd, Eu, Tb) in In2-xSnxO3 - effect on electrical conductivity and optical properties. , 2014, Dalton transactions.

[30]  G. Korotcenkov,et al.  Bulk doping influence on the response of conductometric SnO2 gas sensors: Understanding through cathodoluminescence study , 2014 .

[31]  G. Tan,et al.  A review of thermoelectric cooling: Materials, modeling and applications , 2014 .

[32]  Abhijit Date,et al.  Progress of thermoelectric power generation systems: Prospect for small to medium scale power generation , 2014 .

[33]  Qi Wang,et al.  A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications , 2014 .

[34]  V. Shubha,et al.  Oxide Thermoelectric Materials: A Structure–Property Relationship , 2014, Journal of Electronic Materials.

[35]  G. Korotcenkov,et al.  Thermoelectrical properties of spray pyrolyzed indium oxide thin films doped by tin , 2014 .

[36]  Guangbiao Zhang,et al.  Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires. , 2014, Physical chemistry chemical physics : PCCP.

[37]  D. Clarke,et al.  Relation between thermolectric properties and phase equilibria in the ZnO–In2O3 binary system , 2014 .

[38]  O. Bierwagen,et al.  Plasma‐assisted molecular beam epitaxy of Sn‐doped In2O3: Sn incorporation, structural changes, doping limits, and compensation , 2014 .

[39]  Yuanhua Lin,et al.  Enhanced Thermoelectric Properties of Pb‐doped BiCuSeO Ceramics , 2013, Advanced materials.

[40]  Zihua Wu,et al.  Enhanced thermoelectric figure of merit in nanostructured ZnO by nanojunction effect , 2013 .

[41]  Chan Park,et al.  Density of state effective mass and related charge transport properties in K-doped BiCuOSe , 2013 .

[42]  Qing Hua Wang,et al.  Transition metal oxides – Thermoelectric properties , 2013 .

[43]  Haijun Wu,et al.  Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides , 2013 .

[44]  A. Marcelli,et al.  Evidence of an interlayer charge transfer route in BiCu1−xSeO , 2013 .

[45]  F. Kang,et al.  Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range , 2013 .

[46]  James S. Speck,et al.  Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In 2 O 3 films , 2013 .

[47]  D. Clarke,et al.  Thermal (Kapitza) resistance of interfaces in compositional dependent ZnO-In2O3 superlattices , 2013 .

[48]  A. Balandin,et al.  Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires , 2013, 1305.3832.

[49]  M. Rumyantseva,et al.  Conductivity of nanocrystalline ZnO(Ga) , 2013 .

[50]  J. Piqueras,et al.  Composition-dependent electronic properties of indium–zinc–oxide elongated microstructures , 2013 .

[51]  Mari-Ann Einarsrud,et al.  Solid state sintering of nano-crystalline indium tin oxide , 2013 .

[52]  C. Barreteau,et al.  Influence of Te substitution on the structural and electronic properties of thermoelectric BiCuSeO , 2013 .

[53]  Lei Yang,et al.  Nanostructured thermoelectric materials: current research and future challenge , 2012 .

[54]  Ghenadii Korotcenkov,et al.  The role of grain size on the thermal instability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization , 2012 .

[55]  K. Miki,et al.  Thermoelectric Properties in Transparent-Conductive Cerium-Doped In2O3 Films , 2012 .

[56]  Yuanhua Lin,et al.  High‐Temperature Transport Property of In2−xCexO3 (0 ≤ x ≤ 0.10) Fine Grained Ceramics , 2012 .

[57]  Yuanhua Lin,et al.  High Thermoelectric Performance of Nanostructured In2O3‐Based Ceramics , 2012 .

[58]  A. Weidenkaff,et al.  A morphology study on thermoelectric Al-substituted ZnO , 2012 .

[59]  O. Schmidt,et al.  Suppression of phonon heat conduction in cross-section-modulated nanowires , 2012 .

[60]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[61]  Jeffrey W. Fergus,et al.  Oxide materials for high temperature thermoelectric energy conversion , 2012 .

[62]  T. Buslaps,et al.  Determination of the Solubility of Tin in Indium Oxide Using In Situ and Ex Situ X‐Ray Diffraction , 2012 .

[63]  T. Seong,et al.  Ga Ordering and Electrical Conductivity in Nanotwin and Superlattice-Structured Ga-Doped ZnO , 2012 .

[64]  D. S. Sanditov,et al.  Relation between the parameters of the elasticity theory and averaged bulk modulus of solids , 2011 .

[65]  B. Raveau,et al.  Enhanced Densification and Thermoelectric Performance of In4Sn3O12 by Reactive Sintering in the In‐Sn‐Ga‐O System , 2011 .

[66]  M. Ohtaki Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source , 2011 .

[67]  Alexander A. Balandin,et al.  Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering , 2011 .

[68]  H. Cho,et al.  Drastic improvement of oxide thermoelectric performance using thermal and plasma treatments of the InGaZnO thin films grown by sputtering , 2011 .

[69]  S. Dou,et al.  Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. , 2011, Nano letters.

[70]  Ryoji Funahashi,et al.  Oxide thermoelectrics: The challenges, progress, and outlook , 2011 .

[71]  Yuanhua Lin,et al.  Thermoelectric Performance of Zn and GeCo-Doped In2O3 Fine-Grained Ceramics by the Spark Plasma Sintering , 2011 .

[72]  I. Terasaki High-temperature oxide thermoelectrics , 2011, 1107.2530.

[73]  A. Maignan,et al.  Citrate gel process and thermoelectric properties of Ge-doped In2O3 bulk ceramics , 2011 .

[74]  Yuanhua Lin,et al.  Thermoelectric Performance of Zn and Nd Co-doped In2O3 Ceramics , 2011 .

[75]  David J. Singh,et al.  Analysis of the thermoelectric properties of n-type ZnO , 2011 .

[76]  M. Zebarjadi,et al.  Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution. , 2011, Nano letters.

[77]  Seok Pil Jang,et al.  A Review of Thermal Conductivity Data, Mechanisms and Models for Nanofluids , 2010 .

[78]  B. Raveau,et al.  Synthesis and thermoelectric properties of oxygen deficient fluorite derivative Ga3−xIn5+xSn2O16 , 2010 .

[79]  K. Koumoto,et al.  Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nanowires addition , 2010 .

[80]  Weishu Liu,et al.  High-performance nanostructured thermoelectric materials , 2010 .

[81]  W. Xu,et al.  Effect of Transition‐Metal Cobalt Doping on the Thermoelectric Performance of In2O3 Ceramics , 2010 .

[82]  T. Akiyama,et al.  Thermoelectric Properties of Non-stoichiometric Titanium Oxides for Waste Heat Recovery in Steelworks , 2010 .

[83]  P. S. Reddy,et al.  Electrical and optical properties of In2O3:Mo thin films prepared at various Mo-doping levels , 2010 .

[84]  James S. Speck,et al.  High electron mobility In2O3(001) and (111) thin films with nondegenerate electron concentration , 2010 .

[85]  Yuanhua Lin,et al.  High‐Temperature Thermoelectric Behaviors of Fine‐Grained Gd‐Doped CaMnO3 Ceramics , 2010 .

[86]  K. Poeppelmeier,et al.  Transparent Conducting Oxides in the ZnO—In2O3—SnO2 System , 2010 .

[87]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[88]  S. Tanemura,et al.  Large Seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion. , 2010, ACS Applied Materials and Interfaces.

[89]  Ryoji Funahashi,et al.  Oxide Thermoelectric Materials: A Nanostructuring Approach , 2010 .

[90]  K. Koumoto,et al.  Effects of mesoporous silica addition on thermoelectric properties of Nb-doped SrTiO3 , 2010 .

[91]  K. Koumoto,et al.  Effects of YSZ Additions on Thermoelectric Properties of Nb-Doped Strontium Titanate , 2010 .

[92]  Ning Wang,et al.  Interfacial Thermal Resistance and Thermal Conductivity in Nanograined SrTiO3 , 2010 .

[93]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[94]  A. Tiwari,et al.  High mobility transparent conducting oxides for thin film solar cells , 2010 .

[95]  A. Tsukuda,et al.  Novel thermoelectric properties of complex transition-metal oxides. , 2010, Dalton transactions.

[96]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[97]  M. Dresselhaus,et al.  Modeling study of thermoelectric SiGe nanocomposites , 2009 .

[98]  A. Maignan,et al.  Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at In-site , 2009 .

[99]  G. J. Snyder,et al.  Interfaces in bulk thermoelectric materials: A review for Current Opinion in Colloid and Interface Science , 2009 .

[100]  M. Ohtaki,et al.  High Thermoelectric Performance of Dually Doped ZnO Ceramics , 2009 .

[101]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[102]  T. Yagi,et al.  Thermal transport properties of polycrystalline tin-doped indium oxide films , 2009 .

[103]  Ji-Hui Yang,et al.  Automotive Applications of Thermoelectric Materials , 2009 .

[104]  Kunihito Koumoto,et al.  Recent Progress in Oxide Thermoelectric Materials: p-Type Ca3Co4O9 and n-Type SrTiO3- , 2008 .

[105]  Thomas O. Mason,et al.  Subsolidus Phase Relationships in the ZnO–In2O3–SnO2 System , 2008 .

[106]  A. Maignan,et al.  Enhancement of the thermoelectric performances of In2O3 by the coupled substitution of M2+/Sn4+ for In3+ , 2008 .

[107]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[108]  T. Seebeck,et al.  Recent advances on thermoelectric materials , 2008, 1106.0888.

[109]  A. Majumdar,et al.  Thermal conductivity reduction in oxygen-deficient strontium titanates , 2008 .

[110]  H. Fujiwara,et al.  Structural and electrical properties of hydrogen-doped In2O3 films fabricated by solid-phase crystallization , 2008 .

[111]  Bernard Raveau,et al.  In2O3:Ge, a promising n-type thermoelectric oxide composite , 2008 .

[112]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[113]  Joseph R. Stetter,et al.  The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response , 2007 .

[114]  L. Schlapbach,et al.  Nanostructured thermoelectric oxides with low thermal conductivity , 2007 .

[115]  H. Ohta Thermoelectrics based on strontium titanate , 2007 .

[116]  Y. Chen,et al.  THERMOELECTRIC PROPERTIES OF MnSi1.7 FILMS WITH ADDITION OF ALUMINUM AND CARBON , 2007 .

[117]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[118]  M. Kondo,et al.  Comparative studies of transparent conductive Ti-, Zr-, and sn-doped In2O3 using a combinatorial approach , 2007 .

[119]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[120]  Joseph R. Stetter,et al.  Ozone sensors on the base of SnO2 films deposited by spray pyrolysis , 2007 .

[121]  Xifeng Li,et al.  Transparent conductive oxide thin films of tungsten-doped indium oxide , 2006 .

[122]  J. Nowotny,et al.  Electrical properties of niobium-doped titanium dioxide. 2. Equilibration kinetics. , 2006, The journal of physical chemistry. B.

[123]  H. Ohta,et al.  Carrier generation and transport properties of heavily Nb-doped anatase TiO2 epitaxial films at high temperatures , 2006 .

[124]  Ali Shakouri,et al.  Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices , 2006 .

[125]  H. Ohta,et al.  Thermoelectrical properties of A-site substituted Ca1- xRexMnO3 system , 2006 .

[126]  J. Nowotny,et al.  Electrical properties of niobium-doped titanium dioxide. 1. Defect disorder. , 2006, The journal of physical chemistry. B.

[127]  K. K. Kim,et al.  High-Temperature Thermoelectric Properties of Sb-Containing (ZnO)m(In1-xSbx)2O3 (0 ¡Â x ¡Â 0.1) , 2006 .

[128]  V. Caignaert,et al.  Thermoelectric oxides: important role of the transition metal spin states , 2006, International Conference on Telecommunications.

[129]  I. Tsuyumoto,et al.  Thermoelectric Power in Nonstoichiometric Orthorhombic Titanium Oxides , 2006 .

[130]  K. Koumoto,et al.  Complex Oxide Materials for Potential Thermoelectric Applications , 2006 .

[131]  Dmitri O. Klenov,et al.  Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. , 2006, Physical review letters.

[132]  D. Ginley,et al.  High-mobility molybdenum doped indium oxide , 2006 .

[133]  L. Bulat,et al.  Thermoelectric Phenomena under Large Temperature Gradients , 2005 .

[134]  H. Ohta,et al.  Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature , 2005 .

[135]  John D. Perkins,et al.  Titanium-doped indium oxide: A high-mobility transparent conductor , 2005 .

[136]  I. Terasaki Thermoelectric materials in layered transition-metal oxides , 2005, ICT 2005. 24th International Conference on Thermoelectrics, 2005..

[137]  A. Cornet,et al.  Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing , 2005 .

[138]  S. Lofland,et al.  Bulk synthesis and high-temperature ferromagnetism of (In1−xFex)2O3−σ with Cu co-doping , 2005 .

[139]  K. Poeppelmeier,et al.  Phase relationships and physical properties of homologous compounds in the zinc oxide-indium oxide system , 2005 .

[140]  H. Ohta,et al.  High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals , 2005 .

[141]  Joon-Hyung Lee,et al.  Effect of ZnO addition in In2O3 ceramics: defect chemistry and sintering behavior , 2004 .

[142]  Timothy P. Hogan,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. , 2004 .

[143]  Ali Shakouri,et al.  Improved thermoelectric power factor in metal-based superlattices. , 2004, Physical review letters.

[144]  P. Migiakis,et al.  Thermoelectric properties of LaNi1-xCoxO3 solid solution , 2003 .

[145]  Saffa Riffat,et al.  Thermoelectrics: a review of present and potential applications , 2003 .

[146]  S. Katsuyama,et al.  Thermoelectric properties of (Na1−yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01∼0.35) , 2003 .

[147]  M. Hervieu,et al.  New Misfit Cobaltites [Pb0.7A0.4Sr1.9O3] [CoO2]1.8 (A: Hg, Co) with Large Thermopower. , 2002 .

[148]  I. Terasaki,et al.  Physics of the thermoelectric oxide NaCo/sub 2/O/sub 4/: A guide to new thermoelectric oxides , 2002, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02..

[149]  S. Katsuyama,et al.  Thermoelectric properties of (Zn1−yMgy)1−xAlxO ceramics prepared by the polymerized complex method , 2002 .

[150]  O. Gregory,et al.  High temperature stability of indium tin oxide thin films , 2002 .

[151]  T. Tani,et al.  Thermoelectric Performance of Yttrium-substituted (ZnO)5In2O3 Improved through Ceramic Texturing , 2002 .

[152]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[153]  A. Maignan,et al.  Large thermopower in a metallic cobaltite: The layered Tl-Sr-Co-O misfit , 2001 .

[154]  T. Motohashi,et al.  Simultaneously enhanced thermoelectric power and reduced resistivity of NaxCo2O4 by controlling Na nonstoichiometry , 2001 .

[155]  Kazuo T. Nakamura,et al.  High-Temperature Thermoelectric Properties of NaxCoO2-δ Single Crystals , 2001 .

[156]  R. Funahashi,et al.  Thermoelectric properties of Pb- and Ca-doped (Bi2Sr2O4)xCoO2 whiskers , 2001 .

[157]  I. Terasaki,et al.  Thermoelectric Properties of NaCo2-xCuxO4 Improved by the Substitution of Cu for Co , 2001 .

[158]  Tsunehiro Takeuchi,et al.  An Oxide Single Crystal with High Thermoelectric Performance in Air , 2000 .

[159]  K. Koumoto,et al.  Structure and Thermoelectric Properties of Me-Substituted In4Sn3O12, Me=Y and Ti , 2000 .

[160]  M. Kaneko,et al.  Solid Solubility of SnO2 in In2O3 , 2000 .

[161]  Y. Shigesato,et al.  Electrical properties and surface morphology of heteroepitaxial-grown tin-doped indium oxide thin films deposited by molecular-beam epitaxy , 2000 .

[162]  E. Bukowska,et al.  Studies of BaO–In2O3–CuO ternary system: Part I: Phase equilibria in the isothermal cross-section of 930°C , 2000 .

[163]  K. Koumoto,et al.  Structure and thermoelectric transport properties of isoelectronically substituted (ZnO)5In2O3 , 2000 .

[164]  Mahan,et al.  Minimum thermal conductivity of superlattices , 1999, Physical review letters.

[165]  S. V. Baran,et al.  Sorption and gas sensitive properties of In2O3 based ceramics doped with Ga2O3 , 1998 .

[166]  L. Marks,et al.  A Structural Investigation of Ga3−xIn5+xSn2O16 , 1998 .

[167]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[168]  K. Koumoto,et al.  Improvement in thermoelectric properties of (ZnO)_5In_2O_3 through partial substitution of yttrium for indium , 1998 .

[169]  T. Miyamoto,et al.  Effects of Tin Doping and Oxygen Vacancies on the Electronic States of Indium Oxide , 1997 .

[170]  K. Poeppelmeier,et al.  A NEW TRANSPARENT CONDUCTING OXIDE IN THE GA2O3-IN2O3-SNO2 SYSTEM , 1997 .

[171]  H. Ohta,et al.  Thermoelectric Properties of Homologous Compounds in the ZnO–In2O3 System , 1996 .

[172]  I. A. Rauf,et al.  Structure and properties of tin‐doped indium oxide thin films prepared by reactive electron‐beam evaporation with a zone‐confining arrangement , 1996 .

[173]  Koichi Eguchi,et al.  High‐temperature thermoelectric properties of (Zn1−xAlx)O , 1996 .

[174]  Masaki Nakamura,et al.  Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m = 3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m = 7, 8, 9, and 16) in the In2O3-ZnGa2O4-ZnO System , 1995 .

[175]  M. Riffel,et al.  Thermoelectric generators made of FeSi_2 and HMS: Fabrication and measurement , 1995 .

[176]  L. N. Kholodkovskaya,et al.  New layered compounds with the general composition (MO) (CuSe), where M = Bi, Nd, Gd, Dy, and BiOCuS : syntheses and crystal structure , 1994 .

[177]  W. M. Davis,et al.  Structure of Indium Iron Oxide. , 1994 .

[178]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[179]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[180]  D. J. Bergman,et al.  Thermoelectric properties of a composite medium , 1991 .

[181]  Mahan The Benedicks effect: Nonlocal electron transport in metals. , 1991, Physical review. B, Condensed matter.

[182]  P. Moseley,et al.  On the use of oxides for thermoelectric refrigeration , 1990 .

[183]  W. Pickett Electronic structure of the high-temperature oxide superconductors , 1989 .

[184]  Gerald D. Mahan,et al.  Figure of merit for thermoelectrics , 1989 .

[185]  G. Frank,et al.  The solubilities of Sn in In2O3 and of In in SnO2 crystals grown from Sn—In melts , 1976 .

[186]  Paul G. Klemens,et al.  Thermal Conductivity of Complex Dielectric Crystals , 1973 .

[187]  D. MacDonald,et al.  Vibrational Anharmonicity and Lattice Thermal Properties. II , 1955 .

[188]  1 Layered Compounds in the In 2 O 3 – Ga 2 O 3 – ZnO System and Related Compounds in the Ternary System 1 , 2016 .

[189]  Yuanhua Lin,et al.  High Performance Oxides-Based Thermoelectric Materials , 2015 .

[190]  G. Korotcenkov,et al.  Photoemission surface characterization of (0 0 1) In2O3 thin film through the interactions with oxygen, water and carbon monoxide: Comparison with (1 1 1) orientation , 2015 .

[191]  R. Cloots,et al.  Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process , 2015 .

[192]  Ryoji Funahashi,et al.  Thermoelectric Ceramics for Energy Harvesting , 2013 .

[193]  Gang Chen,et al.  Recent advances in thermoelectric nanocomposites , 2012 .

[194]  Ian M. Tougas,et al.  High-Temperature Thermoelectric Properties of Compounds in the System ZnxInyOx+1.5y , 2012, Journal of Electronic Materials.

[195]  B. Ingram,et al.  Combined Jonker and Ioffe Analysis of Oxide Conductors and Semiconductors , 2011 .

[196]  T. Tritt Thermal Conductivity: Theory, Properties, and Applications , 2010 .

[197]  Elvira Fortunato,et al.  High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications , 2009 .

[198]  J. Nowotny,et al.  Electrical Properties of Niobium-Doped Titanium Dioxide. 3. Thermoelectric Power , 2008 .

[199]  M. Dresselhaus,et al.  Phonon Thermal Conductivity of Superlattice Nanowires for Thermoelectric Applications , 2003 .

[200]  Martha Greenblatt,et al.  Charge and magnetic ordering in the electron-doped magnetoresistive materials (formula presented) (formula presented) , 2001 .

[201]  George S. Nolas,et al.  Thermoelectrics: Basic Principles and New Materials Developments , 2001 .

[202]  Ryoji Funahashi,et al.  High temperature thermoelectric properties of oxide Ca9Co12O28 , 1999 .

[203]  Koichi Eguchi,et al.  Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion , 1997 .

[204]  K. Eguchi,et al.  High-temperature thermoelectric properties of In2O3-based mixed oxides and their applicability to thermoelectric power generation , 1994 .

[205]  O. V. Godzhieva,et al.  A physicochemical study of triple oxides formed in the In2O3-CaO-CuO system , 1992 .

[206]  E. Guilmeau,et al.  Microstructure and thermoelectric characteristics of ( ZnO ) k , 2022 .