Chiral quantum optics

Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light–matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin–photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

[1]  Gardiner,et al.  Driving a quantum system with the output field from another driven quantum system. , 1993, Physical review letters.

[2]  P. Zoller,et al.  Driven-dissipative preparation of entangled states in cascaded quantum-optical networks , 2011, 1112.1690.

[3]  K. Koshino,et al.  Deterministic photon-photon (SWAP)^{1/2} gate using a lambda system , 2009, 0909.4762.

[4]  A. Rauschenbeutel Chiral quantum optics , 2017 .

[5]  Byoungho Lee,et al.  Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons. , 2012, Physical review letters.

[6]  Keyu Xia,et al.  Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling , 2014 .

[7]  Jürgen Volz,et al.  Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms , 2015 .

[8]  Evelyn L. Hu,et al.  Ultrafast all-optical switching by single photons , 2011, Nature Photonics.

[9]  J. Cirac,et al.  Quantum spin dynamics with pairwise-tunable, long-range interactions , 2016, Proceedings of the National Academy of Sciences.

[10]  A. Rauschenbeutel,et al.  Chiral nanophotonic waveguide interface based on spin-orbit interaction of light , 2014, Science.

[11]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[12]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[13]  J. Song,et al.  Single-photon non-linear optics with a quantum dot in a waveguide , 2015, Nature communications.

[14]  Extraction of a single photon from an optical pulse , 2015, 1510.04042.

[15]  R. H. Lehmberg,et al.  Radiation from an N-Atom System. I. General Formalism , 1970 .

[16]  Guohua Wei,et al.  Coherent optical non-reciprocity in axisymmetric resonators. , 2014, Optics express.

[17]  J. Cirac,et al.  Self-organization of atoms along a nanophotonic waveguide. , 2012, Physical review letters.

[18]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[19]  G. Leuchs,et al.  Polarization tailored light driven directional optical nanobeacon. , 2014, Nano letters.

[20]  Jürgen Volz,et al.  Quantum optical circulator controlled by a single chirally coupled atom , 2016, Science.

[21]  F. Nori,et al.  Transverse spin of a surface polariton , 2012 .

[22]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[23]  D. Chang,et al.  Self-organization of atoms coupled to a chiral reservoir. , 2016, Physical review. A.

[24]  L. Kuipers,et al.  Nanophotonic control of circular dipole emission , 2015, Nature Communications.

[25]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[26]  Probing electric and magnetic vacuum fluctuations with quantum dots. , 2014, Physical review letters.

[27]  William B. McKnight,et al.  From Maxwell to paraxial wave optics , 1975 .

[28]  Serge Rosenblum,et al.  All-optical routing of single photons by a one-atom switch controlled by a single photon , 2014, Science.

[29]  S. Scheel,et al.  Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber , 2015, 1505.01275.

[30]  F. J. Rodríguez-Fortuño,et al.  Resolving Light Handedness with an on-Chip Silicon Microdisk , 2014 .

[31]  P. Lodahl,et al.  Interfacing single photons and single quantum dots with photonic nanostructures , 2013, 1312.1079.

[32]  Jin Dong Song,et al.  Deterministic photon-emitter coupling in chiral photonic circuits. , 2014, Nature nanotechnology.

[33]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[34]  V. Lembessis,et al.  Artificial gauge potentials for neutral atoms: an application in evanescent light fields , 2014 .

[35]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[36]  Franco Nori,et al.  Transverse and longitudinal angular momenta of light , 2015, 1504.03113.

[37]  F. Nori,et al.  Quantum spin Hall effect of light , 2015, Science.

[38]  Andreas Reiserer,et al.  Cavity-based quantum networks with single atoms and optical photons , 2014, 1412.2889.

[39]  Pedro David Garcia,et al.  Cavity Quantum Electrodynamics with Anderson-Localized Modes , 2010, Science.

[40]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[41]  F. J. Rodríguez-Fortuño,et al.  Lateral forces on circularly polarizable particles near a surface , 2015, Nature Communications.

[42]  A. Rauschenbeutel,et al.  Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide , 2014, Nature Communications.

[43]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[44]  M. S. Skolnick,et al.  Waveguide-coupled photonic crystal cavity for quantum dot spin readout. , 2013, Optics express.

[45]  J. Song,et al.  Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. , 2014, Physical review letters.

[46]  A. Grimsmo,et al.  Time-Delayed Quantum Feedback Control. , 2015, Physical review letters.

[47]  F. J. Rodríguez-Fortuño,et al.  Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes , 2013, Science.

[48]  Stefan Nolte,et al.  Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures , 2012, Nature Photonics.

[49]  A. Imamoğlu,et al.  Single photon absorption by a single quantum emitter. , 2007, Physical review letters.

[50]  F. D. M. Haldane,et al.  Analogs of quantum-Hall-effect edge states in photonic crystals , 2008 .

[51]  Peter Zoller,et al.  Photonic Circuits with Time Delays and Quantum Feedback. , 2016, Physical review letters.

[52]  Zongfu Yu,et al.  What is — and what is not — an optical isolator , 2013, Nature Photonics.

[53]  C. Gardiner,et al.  The Quantum World of Ultra-Cold Atoms and Light Book II: The Physics of Quantum-Optical Devices , 2015 .

[54]  Esteban Moreno,et al.  Chiral route to spontaneous entanglement generation , 2015, 1507.05750.

[55]  V. Gritsev,et al.  Topologically protected strongly correlated states of photons , 2012, 1212.6432.

[56]  H. Kimble Strong interactions of single atoms and photons in cavity QED , 1998 .

[57]  A. Rauschenbeutel,et al.  Nanofiber-based atom trap created by combining fictitious and real magnetic fields , 2014 .

[58]  Shanhui Fan,et al.  Coherent photon transport from spontaneous emission in one-dimensional waveguides. , 2005, Optics letters.

[59]  Franco Nori,et al.  Extraordinary momentum and spin in evanescent waves , 2013, Nature Communications.

[60]  D. E. Chang,et al.  Quantum many-body models with cold atoms coupled to photonic crystals , 2013, Nature Photonics.

[61]  Z. Jacob,et al.  Universal spin-momentum locking of evanescent waves , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[62]  P. Zoller,et al.  Quantum spin dimers from chiral dissipation in cold-atom chains. , 2014, Physical review letters.

[63]  R. Lehmberg Radiation from an N-Atom System. II. Spontaneous Emission from a Pair of Atoms , 1970 .

[64]  J. Simon,et al.  Synthetic Landau levels for photons , 2015, Nature.

[65]  J. Rarity,et al.  Polarization Engineering in Photonic Crystal Waveguides for Spin-Photon Entanglers. , 2014, Physical review letters.

[66]  A. Rauschenbeutel,et al.  Strong coupling between single atoms and non-transversal photons , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[67]  J. Götte Principles of Nano-Optics, 2nd edn., by Lukas Novotny and Bert Hecht , 2013 .

[68]  M. S. Skolnick,et al.  Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. , 2013, Physical review letters.

[69]  H. Kimble,et al.  Cavity QED with atomic mirrors , 2012, 1201.0643.

[70]  H. Kimble,et al.  Atom–light interactions in photonic crystals , 2013, Nature Communications.

[71]  H. Ritsch,et al.  Light-induced crystallization of cold atoms in a 1D optical trap. , 2013, Physical review letters.

[72]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit coupling in surface plasmon scattering by nanostructures , 2014, Nature Communications.

[73]  M. S. Skolnick,et al.  Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer , 2016, Nature communications.

[74]  Darrick E. Chang,et al.  Quantum nonlinear optics — photon by photon , 2014, Nature Photonics.

[75]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit interactions of light , 2015, Nature Photonics.

[76]  P. Zoller,et al.  Optomechanical transducers for quantum-information processing , 2011, 1106.5394.

[77]  Krzysztof Sacha,et al.  Artificial magnetic field induced by an evanescent wave , 2013, Scientific Reports.

[78]  H. Ritsch,et al.  Self-ordering and collective dynamics of transversely illuminated point-scatterers in a 1D trap , 2014, 1409.5307.

[79]  T. Ralph,et al.  Photon sorting, efficient bell measurements, and a deterministic controlled-Z gate using a passive two-level nonlinearity. , 2015, Physical review letters.

[80]  Mohammad Hafezi,et al.  Robust optical delay lines with topological protection , 2011, 1102.3256.

[81]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[82]  M. Lukin,et al.  Photon sorters and QND detectors using single photon emitters , 2010, 1007.3273.

[83]  Christian Junge,et al.  Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom , 2014, Nature Photonics.

[84]  V. I. Balykin,et al.  Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber , 2004 .

[85]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[86]  Dynamic consequences of optical spin–orbit interaction , 2015, 1504.01766.

[87]  J. Laurat,et al.  Large Bragg Reflection from One-Dimensional Chains of Trapped Atoms Near a Nanoscale Waveguide. , 2016, Physical review letters.

[88]  Peter Zoller,et al.  Quantum optics of chiral spin networks , 2014, 1411.2963.

[89]  Gerd Leuchs,et al.  From transverse angular momentum to photonic wheels , 2015, Nature Photonics.

[90]  Yasunobu Nakamura,et al.  Deterministic photon-photon √ SWAP gate using a system , 2010 .

[91]  T. Thundat,et al.  Universal spin-momentum locked optical forces , 2015, 1511.02305.

[92]  C. Gardiner,et al.  The Quantum World of Ultra-Cold Atoms and Light Book 1: Foundations of Quantum Optics , 2014 .

[93]  Matti Laakso,et al.  Scattering of two photons from two distant qubits: exact solution. , 2014, Physical review letters.

[94]  M. S. Skolnick,et al.  Optical control of the emission direction of a quantum dot , 2013 .

[95]  K. Koshino,et al.  Theory of microwave single-photon detection using an impedance-matched Λ system , 2015, 1501.03881.

[96]  C. cohen-tannoudji,et al.  Experimental Study of Zeeman Light Shifts in Weak Magnetic Fields , 1972 .

[97]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[98]  A. Rauschenbeutel,et al.  Optical wire trap for cold neutral atoms , 2013, 1308.4602.