The Gaia-ESO Survey: the first abundance determination of the pre-main-sequence cluster gamma Velorum

Context. Knowledge of the abundance distribution of star forming regions and young clusters is critical to investigate a variety of issues, from triggered star formation and chemical enrichment by nearby supernova explosions to the ability to form planetary systems. In spite of this, detailed abundance studies are currently available for relatively few regions. Aims. In this context, we present the analysis of the metallicity of the Gamma Velorum cluster, based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. The Gamma Velorum candidate members have been observed with FLAMES, using both UVES and Giraffe, depending on the target brightness and spectral type. In order to derive a solid metallicity determination for the cluster, membership of the observed stars must be first assessed. To this aim, we use several membership criteria including radial velocities, surface gravity estimates, and the detection of the photospheric lithium line. Results. Out of the 80 targets observed with UVES, we identify 14 high-probability members. We find that the metallicity of the cluster is slightly subsolar, with a mean [Fe/H]=−0.057±0.018 dex. Although J08095427-4721419 is one of the high-probability members, its metallicity is significantly larger than the cluster average. We speculate about its origin as the result of recent accretion episodes of rocky bodies of ∼60 M_⊕ hydrogen-depleted material from the circumstellar disk.

[1]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[2]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Kinematic structure in the Gamma Velorum cluster , 2014, 1401.4979.

[3]  V. Adibekyan,et al.  Exploring the α-enhancement of metal-poor planet-hosting stars. The Kepler and HARPS samples , 2012, 1209.6272.

[4]  V. Adibekyan,et al.  Overabundance of alpha-elements in exoplanet host stars , 2012, 1205.6670.

[5]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[6]  Y. Alibert,et al.  Extrasolar planet population synthesis - IV. Correlations with disk metallicity, mass, and lifetime , 2012, 1201.1036.

[7]  B. Ercolano,et al.  Photometric determination of the mass accretion rates of pre-mainsequence stars – III. Results in the Large Magellanic Cloud , 2011, 1111.0835.

[8]  S. Vauclair,et al.  METAL-RICH ACCRETION AND THERMOHALINE INSTABILITIES IN EXOPLANET-HOST STARS: CONSEQUENCES ON THE LIGHT ELEMENTS ABUNDANCES , 2011, 1109.4238.

[9]  Kang-Min Kim,et al.  ABUNDANCES OF REFRACTORY ELEMENTS FOR G-TYPE STARS WITH EXTRASOLAR PLANETS , 2011, 1105.3083.

[10]  Jonathan J. Fortney,et al.  THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED , 2011, 1105.0024.

[11]  I. Sushch,et al.  Modeling of the Vela complex including the Vela supernova remnant, the binary system γ2 Velorum, and the Gum nebula , 2010, 1011.1177.

[12]  Italy.,et al.  Chemical pattern across the young associations ONC and OB1b , 2010, 1010.1658.

[13]  Alan T. Tokunaga,et al.  SHORT LIFETIME OF PROTOPLANETARY DISKS IN LOW-METALLICITY ENVIRONMENTS , 2010, 1010.1668.

[14]  John Asher Johnson,et al.  Giant Planet Occurrence in the Stellar Mass-Metallicity Plane , 2010, 1005.3084.

[15]  B. Ercolano,et al.  Metallicity, planet formation, and disc lifetimes , 2009, 0910.5110.

[16]  J. Eldridge A new-age determination for γ2 Velorum from binary stellar evolution models , 2009, 0909.0504.

[17]  V. D’Orazi,et al.  Metallicity of low-mass stars in Orion , 2009, 0905.1840.

[18]  N. Santos,et al.  Chemical abundances of 451 stars from the HARPS GTO planet search program - Thin disc, thick disc, and planets , 2009, 0902.3374.

[19]  London,et al.  The stellar association around Gamma Velorum and its relationship with Vela OB2 , 2008, 0810.5320.

[20]  B. Pettersson Young Stars and Dust Clouds in Puppis and Vela , 2008 .

[21]  Tucson,et al.  A Spitzer View of Protoplanetary Disks in the γ Velorum Cluster , 2008, 0806.2639.

[22]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[23]  W. Sherry,et al.  MAIN-SEQUENCE FITTING DISTANCE TO THE σ Ori CLUSTER , 2008, 0801.2585.

[24]  D. James,et al.  Chemical abundances in six nearby star-forming regions. Implications for galactic evolution and plan , 2008, 0801.2529.

[25]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[26]  P. Tuthill,et al.  γ2 Velorum: orbital solution and fundamental parameter determination with SUSI , 2007, astro-ph/0702375.

[27]  G. Mars,et al.  Direct constraint on the distance of $\gamma^2$ Velorum from AMBER/VLTI observations , 2006, astro-ph/0610936.

[28]  Observatoire de Geneve,et al.  Abundances of refractory elements in the atmospheres of stars with extrasolar planets , 2005, astro-ph/0512219.

[29]  Erick T. Young,et al.  Disk Evolution in Cep OB2: Results from the Spitzer Space Telescope , 2006 .

[30]  D. James,et al.  Fundamental properties of pre-main sequence stars in young, southern star forming regions: metallicities , 2005, astro-ph/0510596.

[31]  M. Asplund,et al.  The Solar Chemical Composition , 2004, astro-ph/0410214.

[32]  Spain.,et al.  Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation , 2003, astro-ph/0311541.

[33]  D. Soderblom,et al.  Evolution of the Lithium Abundance of Solar-Type Stars. X. Does Accretion Affect the Lithium Dispersion in the Pleiades? , 2002 .

[34]  E. Totten,et al.  The discovery of a low-mass, pre-main-sequence stellar association around γ Velorum , 2000, astro-ph/0002342.

[35]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[36]  J. Kirkpatrick,et al.  Keck Spectra of Pleiades Brown Dwarf Candidates and a Precise Determination of the Lithium Depletion Edge in the Pleiades , 1998, astro-ph/9804005.

[37]  M. Osorio,et al.  Brown dwarfs and extrasolar planets , 1998 .

[38]  K. Cunha,et al.  Chemical Evolution of the Orion Association. IV. The Oxygen and Iron Abundances of F and G Stars , 1998 .

[39]  F. Adams,et al.  Possible Stellar Metallicity Enhancements from the Accretion of Planets , 1997, astro-ph/9710110.

[40]  M. Shetrone,et al.  The Evolution of the Lithium Abundances of Solar-Type Stars. VI. The End of Lithium in the Pleiades , 1996 .

[41]  E. D. Friel,et al.  The Old Open Clusters of the Milky Way , 1995 .

[42]  K. Cunha,et al.  Chemical evolution of the Orion association. II. The carbon, nitrogen, oxygen, silicon, and iron abundances of main-sequence B stars , 1994 .

[43]  John R. Stauffer,et al.  The evolution of the lithium abundances of solar-type stars. III - The Pleiades , 1993 .

[44]  K. Cunha,et al.  Chemical evolution of the orion association. I. The oxygen abundance of main-sequence B stars , 1992 .

[45]  R. Slawson,et al.  OB Associations in VELA at l= 268DEG b= 0DEG , 1988 .

[46]  R. Humphreys Studies of luminous stars in nearby galaxies. I. Supergiants and O stars in the Milky Way. , 1978 .

[47]  Lindsey F. Smith The Distribution of Wolf-Rayet Stars in the Galaxy , 1968 .