Defence Applications of Polymer Nanocomposites

The potential opportunities promised by nanotechnology for enabling advances in defence technologies are staggering. Although these opportunities are likely to be realised over a few decades, many advantages are currently being explored, particularly for defence applications. This review provides an insight into the capabilities offered by nanocomposites which include smart materials, harder/lighter platforms, new fuel sources and storage as well as novel medical applications. It discusses polymer-based nanocomposite materials, nanoscale fillers and provides examples of the actual and potential uses of nanocomposite materials in defence with practical examples.Defence Science Journal, 2010, 60(5), pp.551-563, DOI:http://dx.doi.org/10.14429/dsj.60.578

[1]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[2]  H. Schmidt,et al.  Tailoring of thermomechanical properties of thermoplastic nanocomposites by surface modification of nanoscale silica particles , 1996 .

[3]  V. Rangari,et al.  Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites , 2005 .

[4]  P. Ajayan,et al.  Carbon nanotube filters , 2004, Nature materials.

[5]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[6]  Klaus Friedrich,et al.  Creep resistant polymeric nanocomposites , 2004 .

[7]  Makoto Kato,et al.  Preparation and mechanical properties of polypropylene–clay hybrids based on modified polypropylene and organophilic clay , 2000 .

[8]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[9]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[10]  Balaprasad Ankamwar,et al.  Biological synthesis of triangular gold nanoprisms , 2004, Nature materials.

[11]  T. Ebbesen Carbon Nanotubes: Preparation and Properties , 1996 .

[12]  Reshef Tenne,et al.  Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix , 1998 .

[13]  Z. Yu,et al.  A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization , 1998 .

[14]  Alain Celzard,et al.  Composites based on micron-sized exfoliated graphite particles: Electrical conduction, critical exponents and anisotropy , 1996 .

[15]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[16]  J. T. Lindt,et al.  Electrical properties of exfoliated -graphite filled polyester based composites , 1987 .

[17]  Roger Bacon,et al.  Growth, Structure, and Properties of Graphite Whiskers , 1960 .

[18]  Takashi Kashiwagi,et al.  NANOCOMPOSITES : A REVOLUTIONARY NEW FLAME RETARDANT APPROACH , 1997 .

[19]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[20]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[21]  L. Schadler,et al.  Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites , 2005 .

[22]  Joseph H. Koo,et al.  Nanocomposite rocket ablative materials: Subscale ablation test , 2004 .

[23]  L. Drzal,et al.  Adhesion of Graphite Fibers to Epoxy Matrices: II. The Effect of Fiber Finish , 1983 .

[24]  Richard A. Vaia,et al.  Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates , 1993 .

[25]  M. Kotaki,et al.  Recent advances in polymer nanofibers. , 2004, Journal of nanoscience and nanotechnology.

[26]  T. Hanemann,et al.  Tuning the Refractive Index of Polymers for Polymer Waveguides Using Nanoscaled Ceramics or Organic Dyes , 2004 .

[27]  L. Schadler Polymer‐Based and Polymer‐Filled Nanocomposites , 2004 .

[28]  R. Tenne,et al.  Polymer Nanocomposites with Fullerene‐like Solid Lubricant , 2004 .

[29]  H. Lindberg,et al.  Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure , 2001 .

[30]  T. Pradeep,et al.  Detection and extraction of endosulfan by metal nanoparticles. , 2003, Journal of environmental monitoring : JEM.

[31]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[32]  A. Okada,et al.  Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer , 1998 .

[33]  E. Terentjev,et al.  Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators , 2003, cond-mat/0309216.

[34]  Thomas J. Pinnavaia,et al.  On the Nature of Polyimide-Clay Hybrid Composites , 1994 .

[35]  R. Spontak,et al.  Low‐Temperature, Surface‐Mediated Foaming of Polymer Films , 2004 .

[36]  A. Rinzler,et al.  ALIGNED SINGLE-WALL CARBON NANOTUBES IN COMPOSITES BY MELT PROCESSING METHODS , 2000 .

[37]  G. Sundararajan,et al.  Commercial Prospects for Nanomaterials in India , 2012 .

[38]  Richard A. Vaia,et al.  Microstructural Evolution of Melt Intercalated Polymer−Organically Modified Layered Silicates Nanocomposites , 1996 .

[39]  W. Huang,et al.  Structure and electrical properties of grafted polypropylene/graphite nanocomposites prepared by solution intercalation , 2003 .

[40]  Weibing Xu,et al.  Nonisothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites , 2002 .

[41]  R. Vaia,et al.  Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers , 2004, Nature materials.

[42]  Kathryn M. Butler,et al.  Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites , 2004 .

[43]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .

[44]  A. Okada,et al.  The chemistry of polymer-clay hybrids , 1995 .

[45]  Ying Zheng,et al.  Effects of nanoparticles SiO2 on the performance of nanocomposites , 2003 .

[46]  Shankar Ghosh,et al.  Carbon Nanotube Flow Sensors , 2003, Science.

[47]  N. Wagner,et al.  Dynamic properties of shear thickening colloidal suspensions , 2003 .

[48]  D. Pradhan,et al.  Application of carbon nanomaterial as a microwave absorber. , 2005, Journal of Nanoscience and Nanotechnology.

[49]  A. Diaz,et al.  A novel method for the preparation of magnetic nanoparticles in a polypyrrole powder , 1994 .

[50]  Thomas J. Pinnavaia,et al.  Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites , 1995 .

[51]  Eric A. Grulke,et al.  MULTIWALLED CARBON NANOTUBE POLYMER COMPOSITES: SYNTHESIS AND CHARACTERIZATION OF THIN FILMS , 2002 .

[52]  Joseph H. Koo,et al.  Polymer Nanostructured Materials for Propulsion Systems , 2007 .

[53]  T. Rao,et al.  Doped nanocrystalline ZnO powders for non-linear resistor applications by spray pyrolysis method. , 2009, Journal of nanoscience and nanotechnology.

[54]  Joseph H. Koo,et al.  Nanocomposites for Carbon Fiber-Reinforced Polymer Matrix Composites , 2005 .

[55]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[56]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[57]  Pulickel M. Ajayan,et al.  Nanometre-size tubes of carbon , 1997 .

[58]  Y. Lam,et al.  Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-sized calcium carbonate , 2005 .

[59]  A. Okada,et al.  Preparation and Mechanical Properties of Polypropylene−Clay Hybrids , 1997 .

[60]  T. Pinnavaia,et al.  Clay-Reinforced Epoxy Nanocomposites , 1994 .

[61]  Gary G. Tibbetts,et al.  Surface treatments for improving the mechanical properties of carbon nanofiber/thermoplastic composites , 2003 .

[62]  P. Ajayan,et al.  Electronic structure and localized states at carbon nanotube tips , 1997 .

[63]  M. Dresselhaus,et al.  Graphite fibers and filaments , 1988 .

[64]  M. Lake,et al.  Shape memory polymer nanocomposites , 2002 .

[65]  Shiyu He,et al.  Resistance to vacuum ultraviolet irradiation of nano-TiO2 modified carbon/epoxy composites , 2003 .

[66]  J. T. Lindt,et al.  Electrical properties of exfoliated‐graphite filled polyethylene composites , 1986 .

[67]  Mehdi Hojjati,et al.  Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview , 2006 .

[68]  Eric D. Wetzel,et al.  The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid , 2003 .

[69]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[70]  O. Chauvet,et al.  Localization, Coulomb interactions, and electrical heating in single-wall carbon nanotubes/polymer composites , 2002, cond-mat/0204520.

[71]  Graciela B. Blanchet,et al.  Polyaniline nanotube composites: A high-resolution printable conductor , 2003 .

[72]  Yi-bing Cheng,et al.  Layered Silicate Nanocomposites Based on Various High-Functionality Epoxy Resins: The Influence of Cure Temperature on Morphology, Mechanical Properties, and Free Volume , 2003 .

[73]  Thomas S. Ellis,et al.  Thermal and mechanical properties of a polypropylene nanocomposite , 2003 .

[74]  Emmanuel P. Giannelis,et al.  NEW ADVANCES IN POLYMER/LAYERED SILICATE NANOCOMPOSITES , 2002 .

[75]  E. Kramer,et al.  Intercalation Kinetics of Long Polymers in 2 nm Confinements , 2000 .

[76]  Donald R Paul,et al.  Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites , 2001 .

[77]  P. Dutta,et al.  Handbook of Layered Materials , 2004 .

[78]  Yao Wang,et al.  Effect of processing on morphological structure of polyacrylonitrile matrix nano-ZnO composites , 2003 .

[79]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[80]  X. Bai,et al.  Hydrogen storage in carbon nitride nanobells , 2001 .

[81]  P. Watts,et al.  A low resistance boron-doped carbon nanotube–polystyrene composite , 2001 .

[82]  R. Kaner,et al.  Flash welding of conducting polymer nanofibres , 2004, Nature Materials.

[83]  H. Lindberg,et al.  Synthesis of epoxy–clay nanocomposites. Influence of the nature of the curing agent on structure , 2001 .