Optogenetic activation of septal GABAergic afferents entrains neuronal firing in the medial habenula

[1]  J. Putney A personal journey. , 2018, Cell calcium.

[2]  G. Ahnert-Hilger,et al.  An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence , 2015, eLife.

[3]  F. Georges,et al.  Habenular CB1 Receptors Control the Expression of Aversive Memories , 2015, Neuron.

[4]  I. Ibañez-Tallon,et al.  The habenulo-interpeduncular pathway in nicotine aversion and withdrawal , 2015, Neuropharmacology.

[5]  O. Rando,et al.  Increased CRF signaling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal , 2015, Nature Communications.

[6]  Jihyun Noh,et al.  Repeated nicotine exposure in adolescent rats: Reduction of medial habenular activity and augmentation of nicotine preference , 2015, Physiology & Behavior.

[7]  Y. Ben-Ari,et al.  The GABA excitatory/inhibitory developmental sequence: A personal journey , 2014, Neuroscience.

[8]  H. Lester,et al.  Differential Expression and Function of Nicotinic Acetylcholine Receptors in Subdivisions of Medial Habenula , 2014, The Journal of Neuroscience.

[9]  J. A. Dani,et al.  Nicotine Enhances Excitability of Medial Habenular Neurons via Facilitation of Neurokinin Signaling , 2014, The Journal of Neuroscience.

[10]  Liwang Liu,et al.  Activation of GABAergic Neurons in the Interpeduncular Nucleus Triggers Physical Nicotine Withdrawal Symptoms , 2013, Current Biology.

[11]  J. Dougherty,et al.  Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons , 2013, Proceedings of the National Academy of Sciences.

[12]  Takashi Yamaguchi,et al.  Distinct Roles of Segregated Transmission of the Septo-Habenular Pathway in Anxiety and Fear , 2013, Neuron.

[13]  Y. Sano,et al.  Genetic dissection of medial habenula–interpeduncular nucleus pathway function in mice , 2013, Front. Behav. Neurosci..

[14]  B. Birnir,et al.  Different Subtypes of GABA-A Receptors Are Expressed in Human, Mouse and Rat T Lymphocytes , 2012, PloS one.

[15]  Gerald J. Sun,et al.  Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision , 2012, Nature.

[16]  M. Gassmann,et al.  Regulation of neuronal GABAB receptor functions by subunit composition , 2012, Nature Reviews Neuroscience.

[17]  J. Poncer,et al.  Role of the neuronal K-Cl co-transporter KCC2 in inhibitory and excitatory neurotransmission , 2012, Front. Cell. Neurosci..

[18]  H. Okamoto,et al.  Phylogeny and Ontogeny of the Habenular Structure , 2011, Front. Neurosci..

[19]  U. Maskos,et al.  Aversion to Nicotine Is Regulated by the Balanced Activity of β4 and α5 Nicotinic Receptor Subunits in the Medial Habenula , 2011, Neuron.

[20]  Y. Ben-Ari,et al.  Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital. , 2011, Brain : a journal of neurology.

[21]  Minmin Luo,et al.  Habenula “Cholinergic” Neurons Corelease Glutamate and Acetylcholine and Activate Postsynaptic Neurons via Distinct Transmission Modes , 2011, Neuron.

[22]  C. D. Fowler,et al.  Habenular α5* nicotinic receptor signaling controls nicotine intake , 2011, Nature.

[23]  Qun Lu,et al.  Habenular a5 nicotinic receptor subunit signalling controls nicotine intake , 2011 .

[24]  C. Qin,et al.  Neurochemical Phenotypes of the Afferent and Efferent Projections of the Mouse Medial Habenula Article in Press , 2022 .

[25]  O. Gangisetty,et al.  The optimization of TaqMan real-time RT-PCR assay for transcriptional profiling of GABA-A receptor subunit plasticity , 2009, Journal of Neuroscience Methods.

[26]  Z. Borhegyi,et al.  GABAergic Neurons of the Medial Septum Lead the Hippocampal Network during Theta Activity , 2009, The Journal of Neuroscience.

[27]  J. Boulter,et al.  Nicotinic Receptors in the Habenulo-Interpeduncular System Are Necessary for Nicotine Withdrawal in Mice , 2009, The Journal of Neuroscience.

[28]  Jaclyn I. Wamsteeker,et al.  Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis , 2009, Nature Neuroscience.

[29]  M. Danik,et al.  The Hippocamposeptal Pathway Generates Rhythmic Firing of GABAergic Neurons in the Medial Septum and Diagonal Bands: An Investigation Using a Complete Septohippocampal Preparation In Vitro , 2008, The Journal of Neuroscience.

[30]  L. Chung,et al.  Dual GABAergic synaptic response of fast excitation and slow inhibition in the medial habenula of rat epithalamus. , 2007, Journal of neurophysiology.

[31]  T. Xu,et al.  Absence of GABA type A signaling in adult medial habenular neurons , 2006, Neuroscience.

[32]  K. L. Perkins,et al.  Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices , 2006, Journal of Neuroscience Methods.

[33]  A. Fukuda Diuretic soothes seizures in newborns , 2005, Nature Medicine.

[34]  Z. Borhegyi,et al.  Phase Segregation of Medial Septal GABAergic Neurons during Hippocampal Theta Activity , 2004, The Journal of Neuroscience.

[35]  M. Gassmann,et al.  Molecular Structure and Physiological Functions of GABAB Receptors , 2004 .

[36]  M. Gassmann,et al.  Molecular structure and physiological functions of GABA(B) receptors. , 2004, Physiological reviews.

[37]  D. Lovinger,et al.  Hyperexcitability and epilepsy associated with disruption of the mouse neuronal‐specific K–Cl cotransporter gene , 2002, Hippocampus.

[38]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[39]  T. Freund,et al.  The triangular septal nucleus as the major source of ATP release in the rat habenula: A combined neurochemical and morphological study , 1998, Neuroscience.

[40]  Y. Ben-Ari,et al.  GABA: an excitatory transmitter in early postnatal life , 1991, Trends in Neurosciences.

[41]  W. Nauta,et al.  Efferent connections of the habenular nuclei in the rat , 1979, The Journal of comparative neurology.

[42]  W. Nauta,et al.  Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber‐of‐passage problem , 1977, The Journal of comparative neurology.