Synthetic models for the analysis and control of composite and sandwich aerospace structures in critical conditions

The evolution of the aviation industry has always been driven by the achievement of better performances and the reduction of weight. One successful approach for saving weight is the design of aircraft structures able to work in postbuckling conditions. In

[1]  N. Pagano,et al.  Exact Solutions for Composite Laminates in Cylindrical Bending , 1969 .

[2]  Marco Gherlone,et al.  A homogeneous limit methodology and refinements of computationally efficient zigzag theory for homogeneous, laminated composite, and sandwich plates , 2011 .

[3]  Marco Gherlone,et al.  A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics , 2010 .

[4]  Luigi Iurlaro,et al.  Experimental assessment of the Refined Zigzag Theory for the static bending analysis of sandwich beams , 2018 .

[5]  Luigi Iurlaro,et al.  Bending and free vibration analysis of functionally graded sandwich plates using the Refined Zigzag Theory , 2014 .

[6]  T. H. Brockmann Theory of Adaptive Fiber Composites , 2009 .

[7]  Lucy Edery-Azulay,et al.  Piezoelectric actuation and sensing mechanisms––closed form solutions , 2004 .

[8]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[9]  E. Carrera,et al.  Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory , 2016 .

[10]  Alexander Tessler,et al.  A priori identification of shear locking and stiffening in triangular Mindlin elements , 1985 .

[11]  Herzl Chai,et al.  Informal Progress Report No. 3 on The Incorporation of Bending into the Buckling Delamination Analysis , 1979 .

[12]  R. B. Nelson,et al.  A Refined Theory for Laminated Orthotropic Plates , 1974 .

[13]  M. Gherlone,et al.  Refinement of Timoshenko Beam Theory for Composite and Sandwich Beams Using Zigzag Kinematics , 2007 .

[14]  T. Kármán,et al.  Untersuchungen über Knickfestigkeit , 1910 .

[15]  Paul M. Weaver,et al.  On displacement-based and mixed-variational equivalent single layer theories for modelling highly heterogeneous laminated beams , 2015 .

[16]  R. Ballas,et al.  Piezoelectric Multilayer Beam-Bending Actuators: Static and Dynamic Behavior and Aspects of Sensor Integration (Microtechnology and MEMS) , 2007 .

[17]  Sergio Oller,et al.  Delamination in laminated plates using the 4-noded quadrilateral QLRZ plate element based on the refined zigzag theory , 2014 .

[18]  A. Tessler,et al.  Computationally efficient beam elements for accurate stresses in sandwich laminates and laminated composites with delaminations. , 2017, Computer methods in applied mechanics and engineering.

[19]  Dahsin Liu,et al.  An interlaminar stress continuity theory for laminated composite analysis , 1992 .

[20]  M. Gherlone,et al.  Refined zigzag theory for homogeneous, laminated composite, and sandwich plates: a homogeneous limit methodology for zigzag function selection , 2010 .

[21]  Marco Gherlone,et al.  C0 beam elements based on the Refined Zigzag Theory for multilayered composite and sandwich laminates , 2011 .

[22]  J. N. Reddy,et al.  An accurate determination of stresses in thick laminates using a generalized plate theory , 1990 .

[23]  Izhak Sheinman,et al.  The Effect of Shear Deformation on Post-Buckling Behavior of Laminated Beams , 1987 .

[24]  Marco Gherlone,et al.  A Refined Zigzag Beam Theory for Composite and Sandwich Beams , 2009 .

[25]  M. Gherlone On the Use of Zigzag Functions in Equivalent Single Layer Theories for Laminated Composite and Sandwich Beams: A Comparative Study and Some Observations on External Weak Layers , 2013 .

[26]  Ugo Icardi,et al.  Assessment of recent zig-zag theories for laminated and sandwich structures , 2016 .

[27]  Sérgio Frascino Müller de Almeida,et al.  Enhancement of pre-buckling behavior of composite beams with geometric imperfections using piezoelectric actuators , 1999 .

[28]  Ahmed A. Khdeir,et al.  Buckling of cross-ply laminated beams with arbitrary boundary conditions , 1997 .

[29]  J. Mantari,et al.  Buckling and free vibration of laminated beams with arbitrary boundary conditions using a refined HSDT , 2016 .

[30]  L. Tetmajor,et al.  Die Gesetze der Knickungs- und der zusammengesetzten Druckfestigkeit der technisch wichtigsten Baustoffe , 1903 .

[31]  Jörg Schröder,et al.  Buckling of Bars , 2011 .

[32]  J. N. Reddy,et al.  Modelling of thick composites using a layerwise laminate theory , 1993 .

[33]  Ahmed K. Noor,et al.  Assessment of Shear Deformation Theories for Multilayered Composite Plates , 1989 .

[34]  Erdogan Madenci,et al.  Nonlinear elastic deformations of moderately thick laminated shells subjected to large and rapid rigid-body motion , 1996 .

[35]  K. Ahmet Hasim,et al.  Isogeometric static analysis of laminated composite plane beams by using refined zigzag theory , 2018 .

[36]  J. Loughlan,et al.  The active buckling control of some composite column strips using piezoceramic actuators , 1995 .

[37]  Luigi Iurlaro,et al.  A class of higher-order C0 composite and sandwich beam elements based on the Refined Zigzag Theory , 2015 .

[38]  M. Yildiz,et al.  A novel isogeometric beam element based on mixed form of refined zigzag theory for thick sandwich and multilayered composite beams , 2019, Composites Part B: Engineering.

[39]  Samir A. Emam,et al.  Postbuckling and free vibrations of composite beams , 2009 .

[40]  Aleksander Muc,et al.  Buckling enhancement of laminated composite structures partially covered by piezoelectric actuators , 2019, European Journal of Mechanics - A/Solids.

[41]  E. Carrera Theories and Finite Elements for Multilayered Plates and Shells:A Unified compact formulation with numerical assessment and benchmarking , 2003 .

[42]  Erasmo Carrera,et al.  Advanced models for free vibration analysis of laminated beams with compact and thin-walled open/closed sections , 2015 .

[43]  Alexander Tessler,et al.  Resolving membrane and shear locking phenomena in curved shear‐deformable axisymmetric shell elements , 1988 .

[44]  Andrew A. Berlin,et al.  Towards intelligent structures: active control of buckling , 1994 .

[45]  S. Timoshenko Theory of Elastic Stability , 1936 .

[46]  Francesco Benedettini,et al.  Buckling Experiments: Experimental Methods in Buckling of Thin–Walled Structures Vol. 1: Basic Concepts, Columns, Beams and Plates J. Singer, J. Arbocz and T. Weller John Wiley & Sons, Chichester , 1999 .

[47]  Erasmo Carrera,et al.  Improved Response of Unsymmetrically Laminated Sandwich Plates by Using Zig-zag Functions , 2009 .

[48]  U. Icardi,et al.  Free and Forced Vibration of Laminated and Sandwich Plates by Zig-Zag Theories Differently Accounting for Transverse Shear and Normal Deformability , 2018, Aerospace.

[49]  Robert M. Rivello,et al.  Theory and analysis of flight structures , 1969 .

[50]  G. A. Thurston Newton’s Method Applied to Problems in Nonlinear Mechanics , 1965 .

[51]  Abhijit Mukherjee,et al.  Active control of dynamic instability of piezolaminated imperfect columns , 2002 .

[52]  Marco Di Sciuva,et al.  A refined transverse shear deformation theory for multilayered anisotropic plates. , 1984 .

[53]  Ronald C. Averill,et al.  Static and dynamic response of moderately thick laminated beams with damage , 1994 .

[54]  R. Christensen,et al.  A HIGH-ORDER THEORY OF PLATE DEFORMATION, PART 1: HOMOGENEOUS PLATES , 1977 .

[55]  S. B. Dong,et al.  On a hierarchy of conforming timoshenko beam elements , 1981 .

[56]  A. Szekrényes,et al.  The effect of delamination on the critical buckling force of composite plates: Experiment and simulation , 2017 .

[57]  E. Madenci,et al.  Nonlinear thermoelastic analysis of composite panels under non-uniform temperature distribution , 2000 .

[58]  C. Lee,et al.  Numerical investigation on post-buckling behavior of FGM sandwich plates subjected to in-plane mechanical compression , 2018, Ocean Engineering.

[59]  Yulia Fridman,et al.  Enhanced structural behavior of flexible laminated composite beams , 2008 .

[60]  E. Carrera On the use of the Murakami's zig-zag function in the modeling of layered plates and shells , 2004 .

[61]  Hidenori Murakami,et al.  Laminated Composite Plate Theory With Improved In-Plane Responses , 1986 .

[62]  K. Chandrashekhara,et al.  Active buckling control of smart composite plates-finite-element analysis , 1993 .

[63]  Ioannis G. Raftoyiannis,et al.  Euler buckling of pultruted composite columns , 1993 .

[64]  Ali Karrech,et al.  Buckling and post-buckling analysis of geometrically non-linear composite plates exhibiting large initial imperfections , 2017 .

[65]  Luciano Demasi Refined multilayered plate elements based on Murakami zig–zag functions , 2005 .

[66]  P. Weaver,et al.  Efficient 3D Stress Capture of Variable-Stiffness and Sandwich Beam Structures , 2019, AIAA Journal.

[67]  R Maquoi,et al.  SUR LA FORCE PORTANTE DES POUTRES COLONNES , 1982 .

[68]  Marco Gherlone,et al.  Assessment of the Refined Zigzag Theory for bending, vibration, and buckling of sandwich plates: a comparative study of different theories , 2013 .

[69]  Julio F. Davalos,et al.  Static shear correction factor for laminated rectangular beams , 1996 .

[70]  Mahmoud Shakeri,et al.  Active control of geometrically non-linear transient response of sandwich beams with a flexible core using piezoelectric patches , 2013 .

[71]  Alessandra Treviso,et al.  A C0-continuous RZT beam element for the damped response of laminated structures , 2015 .

[72]  J. Geoffrey Chase,et al.  Optimal stabilization of plate buckling , 1999 .

[73]  Hai-jun Shen,et al.  A refined layerwise finite element modeling of delaminated composite laminates with piezoelectric layers , 2018, Thin-Walled Structures.

[74]  Dahsin Liu,et al.  An Overall View of Laminate Theories Based on Displacement Hypothesis , 1996 .

[75]  G. Kardomateas,et al.  Buckling and Postbuckling of Delaminated Composites Under Compressive Loads Including Transverse Shear Effects , 1988 .

[76]  P. Qiao,et al.  Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression , 2015 .

[77]  T. Hughes,et al.  A three-node mindlin plate element with improved transverse shear , 1985 .

[78]  X. Yang,et al.  Analytical solutions for free vibration and buckling of composite beams using a higher order beam theory , 2016 .

[79]  E. Oñate,et al.  Two-noded beam element for composite and sandwich beams using Timoshenko theory and refined zigzag kinematics , 2010 .

[80]  Erdogan Madenci,et al.  Nonlinear analysis of laminates through a mindlin-type shear deformable shallow shell element , 1997 .

[81]  E. Reissner On a certain mixed variational theorem and a proposed application , 1984 .

[82]  Haim Waisman,et al.  Active stiffening of laminated composite beams using piezoelectric actuators , 2002 .

[83]  R. Christensen,et al.  A High-Order Theory of Plate Deformation—Part 2: Laminated Plates , 1977 .

[84]  Sergio Oller,et al.  A numerical model of delamination in composite laminated beams using the LRZ beam element based on the refined zigzag theory , 2013 .

[85]  Sergio Oller,et al.  Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory , 2012 .

[86]  Simon Wang,et al.  Post-local buckling-driven delamination in bilayer composite beams , 2015 .

[87]  Richard Vynne Southwell,et al.  On the analysis of experimental observations in problems of elastic stability , 1932 .

[88]  Mark H. Yim,et al.  Optimal stabilization of column buckling , 1999 .

[89]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[90]  M. Gherlone Exact formulas for bending of sandwich beams using the Refined Zigzag Theory , 2014 .

[91]  James H. Starnes,et al.  A new stiffened shell element for geometrically nonlinear analysis of composite laminates , 2000 .

[92]  J. L. Sanders,et al.  NONLINEAR THEORIES FOR THIN SHELLS , 1963 .

[93]  J. N. Reddy,et al.  A generalization of two-dimensional theories of laminated composite plates† , 1987 .

[94]  Luigi Iurlaro,et al.  Free vibration analysis of sandwich beams using the Refined Zigzag Theory: an experimental assessment , 2015 .

[95]  Erasmo Carrera,et al.  Analysis of laminated beams via Unified Formulation and Legendre polynomial expansions , 2016 .

[96]  Cai Si-wei,et al.  A Refined Theory for Laminated Anisotropic Plates , 1991 .

[97]  Isaac Fried,et al.  Minimal-degree thin triangular plate and shell bending finite elements of order two and four , 1986 .

[98]  P. Qiao,et al.  Buckling of delaminated bi-layer beam-columns , 2011 .

[99]  J. Z. Zhu,et al.  The finite element method , 1977 .

[100]  D. Shu Buckling of multiple delaminated beams , 1998 .

[101]  N. Yahnioglu,et al.  Buckling delamination of a sandwich plate-strip with piezoelectric face and elastic core layers , 2013 .

[102]  W. Knauss,et al.  One dimensional modelling of failure in laminated plates by delamination buckling , 1981 .

[103]  Alfonso Pagani,et al.  Accurate static response of single- and multi-cell laminated box beams , 2016 .