Acceleration of Weak Galerkin Methods for the Laplacian Eigenvalue Problem

Recently, we proposed a weak Galerkin finite element method for the Laplace eigenvalue problem. In this paper, we present two-grid and two-space skills to accelerate the weak Galerkin method. By choosing parameters properly, the two-grid and two-space weak Galerkin method not only doubles the convergence rate, but also maintains the asymptotic lower bounds property of the weak Galerkin method. Some numerical examples are provided to validate our theoretical analysis.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Tomaÿs Vejchodsky,et al.  COMPUTING UPPER BOUNDS ON FRIEDRICHS' CONSTANT , 2012 .

[3]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[4]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[5]  Hehu Xie,et al.  Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods , 2011, 1109.5977.

[6]  Daniel Peterseim,et al.  Two-Level Discretization Techniques for Ground State Computations of Bose-Einstein Condensates , 2013, SIAM J. Numer. Anal..

[7]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[8]  F. Chatelin Spectral approximation of linear operators , 2011 .

[9]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  Carsten Carstensen,et al.  Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..

[12]  Hehu Xie,et al.  Acceleration of stabilized finite element discretizations for the Stokes eigenvalue problem , 2015, Adv. Comput. Math..

[13]  Hehu Xie,et al.  The weak Galerkin method for eigenvalue problems , 2015 .

[14]  Jun Hu,et al.  The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.

[15]  Xuefeng Liu A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..

[16]  Aihui Zhou,et al.  Finite Element Methods for Eigenvalue Problems , 2016 .

[17]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[18]  Junping Wang,et al.  A weak Galerkin mixed finite element method for second order elliptic problems , 2012, Math. Comput..

[19]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..

[20]  Qilong Zhai,et al.  A Weak Galerkin Finite Element Scheme for the Biharmonic Equations by Using Polynomials of Reduced Order , 2015, J. Sci. Comput..

[21]  R. Durán,et al.  ASYMPTOTIC LOWER BOUNDS FOR EIGENVALUES BY NONCONFORMING FINITE ELEMENT METHODS , 2004 .

[22]  J. Bramble,et al.  Effects of Boundary Regularity on the Discretization Error in the Fixed Membrane Eigenvalue Problem , 1968 .

[23]  Lin Mu,et al.  A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods , 2013, J. Comput. Phys..

[24]  Qilong Zhai,et al.  The Weak Galerkin Method for Elliptic Eigenvalue Problems , 2019, Communications in Computational Physics.

[25]  Shangyou Zhang,et al.  -weak Galerkin Finite Element Method for the Biharmonic Equation , 2014 .

[26]  F. Chaitin-Chatelin Spectral approximation of linear operators , 1983 .

[27]  Tomás Vejchodský,et al.  Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants , 2013, SIAM J. Numer. Anal..

[28]  Hans F. Weinberger,et al.  Lower bounds for higher eigenvalues by finite difference methods. , 1958 .

[29]  Xuefeng Liu,et al.  Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..

[30]  Hai Bi,et al.  Two-Grid Finite Element Discretization Schemes Based on Shifted-Inverse Power Method for Elliptic Eigenvalue Problems , 2011, SIAM J. Numer. Anal..

[31]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[32]  Andrey B. Andreev,et al.  Superconvergence Postprocessing for Eigenvalues , 2002 .

[33]  X. Hu,et al.  Two-Grid Methods for Maxwell Eigenvalue Problems , 2014, SIAM J. Numer. Anal..

[34]  Hehu Xie,et al.  Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems , 2009 .

[35]  Xiaozhe Hu,et al.  Corrigendum to: "Acceleration of a two-grid method for eigenvalue problems" , 2011, Math. Comput..

[36]  Shangyou Zhang,et al.  A Weak Galerkin Finite Element Method for the Maxwell Equations , 2013, Journal of Scientific Computing.

[37]  Hehu Xie,et al.  Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem , 2014 .

[38]  Denis S. Grebenkov,et al.  Geometrical Structure of Laplacian Eigenfunctions , 2012, SIAM Rev..

[39]  Hehu Xie,et al.  Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem , 2011 .

[40]  Junping Wang,et al.  Weak Galerkin finite element methods for Parabolic equations , 2012, 1212.3637.

[41]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[42]  Mats G. Larson,et al.  A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..

[43]  Junping Wang,et al.  Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes , 2013, 1303.0927.