Linear Predictors for Fast Simultaneous Modeling and Tracking

An approach for fast tracking of arbitrary image features with no prior model and no offline learning stage is presented. Fast tracking is achieved using banks of linear displacement predictors learnt online. A multi-modal appearance model is also learnt on-the-fly that facilitates the selection of subsets of predictors suitable for prediction in the next frame. The approach is demonstrated in real-time on a number of challenging video sequences and experimentally compared to other simultaneous modeling and tracking approaches with favourable results.

[1]  Patrick Bouthemy,et al.  Robust real-time visual tracking using a 2D-3D model-based approach , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[2]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[3]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Richard Bowden,et al.  N-tier Simultaneous Modelling and Tracking for Arbitrary Warps , 2006, BMVC.

[6]  Michel Dhome,et al.  Real Time Robust Template Matching , 2002, BMVC.

[7]  Jiri Matas,et al.  Learning Efficient Linear Predictors for Motion Estimation , 2006, ICVGIP.

[8]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[9]  Toshimitsu Kaneko,et al.  Template update criterion for template matching of image sequences , 2002, Object recognition supported by user interaction for service robots.

[10]  Béla Ágai,et al.  CONDENSED 1,3,5-TRIAZEPINES - V THE SYNTHESIS OF PYRAZOLO [1,5-a] [1,3,5]-BENZOTRIAZEPINES , 1983 .

[11]  Andrew Blake,et al.  A sparse probabilistic learning algorithm for real-time tracking , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[12]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.