Discontinuity of the phase transition for the planar random-cluster and Potts models with $q>4$
暂无分享,去创建一个
Ioan Manolescu | Vincent Tassion | Matan Harel | Hugo Duminil-Copin | H. Duminil-Copin | V. Tassion | Matan Harel | Maxime Gagnebin | I. Manolescu | Maxime Gagnebin
[1] R. B. Potts. Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] The phase transitions of the planar random-cluster and Potts models with $$q \ge 1$$q≥1 are sharp , 2014, 1409.3748.
[3] R. Baxter,et al. Solvable eight-vertex model on an arbitrary planar lattice , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[4] Elliott H Lieb,et al. Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[5] Existence of Solutions to the Bethe Ansatz Equations for the 1D Hubbard Model: Finite Lattice and Thermodynamic Limit , 2004, cond-mat/0403736.
[6] F. Y. Wu. The Potts model , 1982 .
[7] M. .. Moore. Exactly Solved Models in Statistical Mechanics , 1983 .
[8] H. Duminil-Copin,et al. Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with 1≤q≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} , 2016, Communications in Mathematical Physics.
[9] Thermodynamic limit of the six-vertex model with domain wall boundary conditions , 2000, cond-mat/0004250.
[10] A. Sokal,et al. Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.
[11] V. Beara. The self-dual point of the two-dimensional random-cluster model is critical for q > 1 , 2011 .
[12] N. Reshetikhin. Lectures on the integrability of the 6-vertex model , 2010, 1010.5031.
[13] Vincent Tassion,et al. Sharp phase transition for the random-cluster and Potts models via decision trees , 2017, Annals of Mathematics.
[14] C. Fortuin. On the random-cluster model: III. The simple random-cluster model , 1972 .
[15] Markus Fulmek. NONINTERSECTING LATTICE PATHS ON THE CYLINDER , 2003, math/0311331.
[16] K. Kozlowski. On Condensation Properties of Bethe Roots Associated with the XXZ Chain , 2015, 1508.05741.
[17] H. Bethe,et al. Zur Theorie der Metalle , 1931 .
[18] H. Duminil-Copin. Parafermionic observables and their applications , 2015 .
[19] Six-vertex model with domain wall boundary conditions and one-matrix model , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[20] H. Duminil-Copin,et al. A new computation of the critical point for the planar random-cluster model with $q\ge1$ , 2016, 1604.03702.
[21] S. Wallon,et al. The correlation length of the Potts model at the first-order transition point , 1993 .
[22] Chen Ning Yang,et al. One-dimensional chain of anisotropic spin-spin interactions , 1966 .
[23] H. Duminil-Copin,et al. The Bethe ansatz for the six-vertex and XXZ models: An exposition , 2016, 1611.09909.
[24] A. Borodin,et al. Stochastic six-vertex model , 2014, 1407.6729.