Novel Common Genetic Susceptibility Loci for Colorectal Cancer
暂无分享,去创建一个
Stephanie A. Bien | Elizabeth L. Barry | Aung Ko Win | C. Carlson | A. LaCroix | T. Hudson | C. Ulrich | T. Sellers | E. Feskens | G. Coetzee | D. English | J. Chang-Claude | M. Hoffmeister | R. Hayes | S. Chanock | J. Potter | D. Seminara | S. Gruber | D. Duggan | A. Wolk | K. Matsuda | M. Woods | W. Lieb | G. Giles | G. Severi | J. Hopper | C. Haiman | S. Thibodeau | M. Southey | L. Kolonel | L. Marchand | L. FitzGerald | M. Stern | A. Joshi | D. Easton | J. Hampe | G. Rennert | P. Pharoah | C. Amos | K. Offit | D. Conti | D. Albanes | J. Virtamo | S. Weinstein | F. Schumacher | E. Giovannucci | W. Jia | X. Shu | Y. Xiang | W. Zheng | S. Berndt | R. Milne | V. Moreno | Y. Yen | G. Casey | S. Markowitz | J. Church | A. Trichopoulou | A. Lindblom | S. Gallinger | V. Arndt | K. Matsuo | A. Wu | P. Newcomb | J. Vijai | U. Peters | C. Fuchs | M. Jenkins | D. Thomas | H. Lenz | D. J. Van Den Berg | W. Gauderman | C. Kooperberg | S. Jee | L. Hsu | L. Fritsche | E. Jacobs | B. Zanke | E. White | Z. Stadler | D. Shibata | R. Schoen | M. Gunter | N. Murphy | D. Palli | M. Slattery | Jian Gong | S. Küry | S. Tsugane | V. Krogh | M. Lemire | N. Lindor | M. Cotterchio | Ya‐Wen Cheng | J. Huyghe | Y. Zeng | Kevin J. McDonnell | W. Grady | D. Buchanan | E. Siegel | J. Greenson | S. Kono | E. Barry | J. Figueiredo | Yun-Ru Liu | G. Idos | Jing Ma | B. Mukherjee | C. Schafmayer | S. Kweon | M. Boutron‐Ruault | C. Edlund | S. Gogarten | C. Laurie | Yi Lin | Katja Butterbach | B. Caan | Hansong Wang | T. Harrison | Shuo Jiao | I. Cheng | F. Loupakis | M. Iwasaki | N. Zubair | A. Aragaki | S. Bézieau | P. Campbell | Keith Curtis | D. Taverna | Ben Zhang | P. Hofer | A. Gsur | H. Rennert | F. Lejbkowicz | Christopher I. Li | M. Gago-Domínguez | J. Castelao | J. Huerta | C. González-Villalpando | S. Stintzing | F. V. van Duijnhoven | L. Raskin | Li Li | C. Mancao | Yingchang Lu | V. Martín | A. Molina | Stephanie L. Schmit | J. Boehm | S. Brezina | Rocky Fischer | M. Gala | S. Harlid | C. McNeil | Marilena Melas | S. Plummer | F. Manion | Duncan C. Thomas | S. Tring | Bridget M. Riggs | H. Brenner | J. P. Cotoré | Wei Shi | F. Luh | Hanane Omichessan | A. Chan | J. Gong | S. Bien | M. Alonso | C. Qu | J. E. Castelao | Shu-chen Huang | D. J. Hunter | Julyann Pérez-Mayoral | Barbara K. Fortini | K. Wu | John Harju | C. Qu | S. Schmit | R. Jackson | Amanda M. Bloomer | Kristen Anton | L. Chin | T. Church | Marcia Cruz Correa | Elena M Gonzalez-Villalpando | T. Kuehn | D. Levine | Bethany van Guelpan | C. González‐Villalpando | Amanda M Bloomer | M. Jenkins | K. McDonnell | Jing Ma | A. Wu | Sophia Harlid | R. Jackson | L. Hsu
[1] M. Dwyer,et al. Genetic/Familial high-risk assessment: Colorectal, version 2.2019 featured updates to the NCCN guidelines , 2019 .
[2] J. Witte,et al. Telomere structure and maintenance gene variants and risk of five cancer types , 2016, International journal of cancer.
[3] Dennis J. Hazelett,et al. The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.
[4] Mark E. Robson,et al. Counselling framework for moderate-penetrance cancer-susceptibility mutations , 2016, Nature Reviews Clinical Oncology.
[5] H. Brenner,et al. Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk. , 2016, Gastroenterology.
[6] C. Haiman,et al. Genome-wide association study of colorectal cancer in Hispanics , 2016, Carcinogenesis.
[7] V. Salomaa,et al. Variation at 2q35 (PNKD and TMBIM1) influences colorectal cancer risk and identifies a pleiotropic effect with inflammatory bowel disease , 2016, Human molecular genetics.
[8] L. Hou,et al. A genome-wide association study for colorectal cancer identifies a risk locus in 14q23.1 , 2015, Human Genetics.
[9] Stephanie A. Bien,et al. Genetic architecture of colorectal cancer , 2015, Gut.
[10] Christopher P. Fischer,et al. Genome-wide association study of colorectal cancer identifies six new susceptibility loci , 2015, Nature Communications.
[11] Mengmeng Du,et al. A model to determine colorectal cancer risk using common genetic susceptibility loci. , 2015, Gastroenterology.
[12] G. Kempermann. Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .
[13] Jun S. Liu,et al. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.
[14] Elizabeth L. Barry,et al. Multiple Functional Risk Variants in a SMAD7 Enhancer Implicate a Colorectal Cancer Risk Haplotype , 2014, PloS one.
[15] Xavier Solé,et al. Identification of candidate susceptibility genes for colorectal cancer through eQTL analysis. , 2014, Carcinogenesis.
[16] D. V. Berg,et al. Trans-ethnic genome-wide association study of colorectal cancer identifies a new susceptibility locus in VTI1A , 2014, Nature Communications.
[17] William Wheeler,et al. Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. , 2014, Human molecular genetics.
[18] Alexander R. Pico,et al. Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk , 2014, Nature Genetics.
[19] Yan Guo,et al. Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk , 2014, Nature Genetics.
[20] Christopher A Haiman,et al. Fine-mapping of genome-wide association study-identified risk loci for colorectal cancer in African Americans. , 2013, Human molecular genetics.
[21] Wei Lu,et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.
[22] L. Lipton,et al. The TERT variant rs2736100 is associated with colorectal cancer risk , 2012, British Journal of Cancer.
[23] Jane E. Carpenter,et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer , 2011, Nature Genetics.
[24] D. Kerr,et al. Fine-mapping of colorectal cancer susceptibility loci at 8q23.3, 16q22.1 and 19q13.11: refinement of association signals and use of in silico analysis to suggest functional variation and unexpected candidate target genes. , 2011, Human molecular genetics.
[25] P. Farnham,et al. Using ChIP-seq technology to generate high-resolution profiles of histone modifications. , 2011, Methods in molecular biology.
[26] Jean-Baptiste Cazier,et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33 , 2010, Nature Genetics.
[27] T. Mikkelsen,et al. The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.
[28] F. Lammert,et al. A common variant at the TERT-CLPTM1L locus modulates genetic risk of bile duct cancer , 2010 .
[29] Wei Zheng,et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33 , 2010, Nature Genetics.
[30] Ying Wang,et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. , 2009, American journal of human genetics.
[31] Geoffrey S. Tobias,et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer , 2009, Nature Genetics.
[32] Steven Gallinger,et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer , 2008, Nature Genetics.
[33] R. Burt. Inheritance of Colorectal Cancer. , 2007, Drug discovery today. Disease mechanisms.
[34] Oliver Sieber,et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk , 2007, Nature Genetics.
[35] S. Gruber,et al. Genetic variation in 8q24 associated with risk of colorectal cancer , 2007, Cancer biology & therapy.
[36] P. Fearnhead,et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24 , 2007, Nature Genetics.
[37] Paul T. Groth,et al. The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.
[38] J. Kaprio,et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. , 2000, The New England journal of medicine.