Novel Common Genetic Susceptibility Loci for Colorectal Cancer

BACKGROUND Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk. METHODS We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided. RESULTS The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0. CONCLUSIONS This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening.

Stephanie A. Bien | Elizabeth L. Barry | Aung Ko Win | C. Carlson | A. LaCroix | T. Hudson | C. Ulrich | T. Sellers | E. Feskens | G. Coetzee | D. English | J. Chang-Claude | M. Hoffmeister | R. Hayes | S. Chanock | J. Potter | D. Seminara | S. Gruber | D. Duggan | A. Wolk | K. Matsuda | M. Woods | W. Lieb | G. Giles | G. Severi | J. Hopper | C. Haiman | S. Thibodeau | M. Southey | L. Kolonel | L. Marchand | L. FitzGerald | M. Stern | A. Joshi | D. Easton | J. Hampe | G. Rennert | P. Pharoah | C. Amos | K. Offit | D. Conti | D. Albanes | J. Virtamo | S. Weinstein | F. Schumacher | E. Giovannucci | W. Jia | X. Shu | Y. Xiang | W. Zheng | S. Berndt | R. Milne | V. Moreno | Y. Yen | G. Casey | S. Markowitz | J. Church | A. Trichopoulou | A. Lindblom | S. Gallinger | V. Arndt | K. Matsuo | A. Wu | P. Newcomb | J. Vijai | U. Peters | C. Fuchs | M. Jenkins | D. Thomas | H. Lenz | D. J. Van Den Berg | W. Gauderman | C. Kooperberg | S. Jee | L. Hsu | L. Fritsche | E. Jacobs | B. Zanke | E. White | Z. Stadler | D. Shibata | R. Schoen | M. Gunter | N. Murphy | D. Palli | M. Slattery | Jian Gong | S. Küry | S. Tsugane | V. Krogh | M. Lemire | N. Lindor | M. Cotterchio | Ya‐Wen Cheng | J. Huyghe | Y. Zeng | Kevin J. McDonnell | W. Grady | D. Buchanan | E. Siegel | J. Greenson | S. Kono | E. Barry | J. Figueiredo | Yun-Ru Liu | G. Idos | Jing Ma | B. Mukherjee | C. Schafmayer | S. Kweon | M. Boutron‐Ruault | C. Edlund | S. Gogarten | C. Laurie | Yi Lin | Katja Butterbach | B. Caan | Hansong Wang | T. Harrison | Shuo Jiao | I. Cheng | F. Loupakis | M. Iwasaki | N. Zubair | A. Aragaki | S. Bézieau | P. Campbell | Keith Curtis | D. Taverna | Ben Zhang | P. Hofer | A. Gsur | H. Rennert | F. Lejbkowicz | Christopher I. Li | M. Gago-Domínguez | J. Castelao | J. Huerta | C. González-Villalpando | S. Stintzing | F. V. van Duijnhoven | L. Raskin | Li Li | C. Mancao | Yingchang Lu | V. Martín | A. Molina | Stephanie L. Schmit | J. Boehm | S. Brezina | Rocky Fischer | M. Gala | S. Harlid | C. McNeil | Marilena Melas | S. Plummer | F. Manion | Duncan C. Thomas | S. Tring | Bridget M. Riggs | H. Brenner | J. P. Cotoré | Wei Shi | F. Luh | Hanane Omichessan | A. Chan | J. Gong | S. Bien | M. Alonso | C. Qu | J. E. Castelao | Shu-chen Huang | D. J. Hunter | Julyann Pérez-Mayoral | Barbara K. Fortini | K. Wu | John Harju | C. Qu | S. Schmit | R. Jackson | Amanda M. Bloomer | Kristen Anton | L. Chin | T. Church | Marcia Cruz Correa | Elena M Gonzalez-Villalpando | T. Kuehn | D. Levine | Bethany van Guelpan | C. González‐Villalpando | Amanda M Bloomer | M. Jenkins | K. McDonnell | Jing Ma | A. Wu | Sophia Harlid | R. Jackson | L. Hsu

[1]  M. Dwyer,et al.  Genetic/Familial high-risk assessment: Colorectal, version 2.2019 featured updates to the NCCN guidelines , 2019 .

[2]  J. Witte,et al.  Telomere structure and maintenance gene variants and risk of five cancer types , 2016, International journal of cancer.

[3]  Dennis J. Hazelett,et al.  The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.

[4]  Mark E. Robson,et al.  Counselling framework for moderate-penetrance cancer-susceptibility mutations , 2016, Nature Reviews Clinical Oncology.

[5]  H. Brenner,et al.  Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk. , 2016, Gastroenterology.

[6]  C. Haiman,et al.  Genome-wide association study of colorectal cancer in Hispanics , 2016, Carcinogenesis.

[7]  V. Salomaa,et al.  Variation at 2q35 (PNKD and TMBIM1) influences colorectal cancer risk and identifies a pleiotropic effect with inflammatory bowel disease , 2016, Human molecular genetics.

[8]  L. Hou,et al.  A genome-wide association study for colorectal cancer identifies a risk locus in 14q23.1 , 2015, Human Genetics.

[9]  Stephanie A. Bien,et al.  Genetic architecture of colorectal cancer , 2015, Gut.

[10]  Christopher P. Fischer,et al.  Genome-wide association study of colorectal cancer identifies six new susceptibility loci , 2015, Nature Communications.

[11]  Mengmeng Du,et al.  A model to determine colorectal cancer risk using common genetic susceptibility loci. , 2015, Gastroenterology.

[12]  G. Kempermann Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .

[13]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[14]  Elizabeth L. Barry,et al.  Multiple Functional Risk Variants in a SMAD7 Enhancer Implicate a Colorectal Cancer Risk Haplotype , 2014, PloS one.

[15]  Xavier Solé,et al.  Identification of candidate susceptibility genes for colorectal cancer through eQTL analysis. , 2014, Carcinogenesis.

[16]  D. V. Berg,et al.  Trans-ethnic genome-wide association study of colorectal cancer identifies a new susceptibility locus in VTI1A , 2014, Nature Communications.

[17]  William Wheeler,et al.  Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. , 2014, Human molecular genetics.

[18]  Alexander R. Pico,et al.  Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk , 2014, Nature Genetics.

[19]  Yan Guo,et al.  Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk , 2014, Nature Genetics.

[20]  Christopher A Haiman,et al.  Fine-mapping of genome-wide association study-identified risk loci for colorectal cancer in African Americans. , 2013, Human molecular genetics.

[21]  Wei Lu,et al.  Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.

[22]  L. Lipton,et al.  The TERT variant rs2736100 is associated with colorectal cancer risk , 2012, British Journal of Cancer.

[23]  Jane E. Carpenter,et al.  A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer , 2011, Nature Genetics.

[24]  D. Kerr,et al.  Fine-mapping of colorectal cancer susceptibility loci at 8q23.3, 16q22.1 and 19q13.11: refinement of association signals and use of in silico analysis to suggest functional variation and unexpected candidate target genes. , 2011, Human molecular genetics.

[25]  P. Farnham,et al.  Using ChIP-seq technology to generate high-resolution profiles of histone modifications. , 2011, Methods in molecular biology.

[26]  Jean-Baptiste Cazier,et al.  Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33 , 2010, Nature Genetics.

[27]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[28]  F. Lammert,et al.  A common variant at the TERT-CLPTM1L locus modulates genetic risk of bile duct cancer , 2010 .

[29]  Wei Zheng,et al.  A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33 , 2010, Nature Genetics.

[30]  Ying Wang,et al.  A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. , 2009, American journal of human genetics.

[31]  Geoffrey S. Tobias,et al.  Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer , 2009, Nature Genetics.

[32]  Steven Gallinger,et al.  Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer , 2008, Nature Genetics.

[33]  R. Burt Inheritance of Colorectal Cancer. , 2007, Drug discovery today. Disease mechanisms.

[34]  Oliver Sieber,et al.  A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk , 2007, Nature Genetics.

[35]  S. Gruber,et al.  Genetic variation in 8q24 associated with risk of colorectal cancer , 2007, Cancer biology & therapy.

[36]  P. Fearnhead,et al.  Genome-wide association study of prostate cancer identifies a second risk locus at 8q24 , 2007, Nature Genetics.

[37]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[38]  J. Kaprio,et al.  Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. , 2000, The New England journal of medicine.