Environmental Drivers of Water Use for Caatinga Woody Plant Species: Combining Remote Sensing Phenology and Sap Flow Measurements

[1]  Csaba Wirnhardt,et al.  Assessing Spatial Limits of Sentinel-2 Data on Arable Crops in the Context of Checks by Monitoring , 2020, Remote. Sens..

[2]  P. G. Murphy,et al.  Ecology of Tropical Dry Forest , 1986 .

[3]  G. Goldstein,et al.  Stem water storage capacity and efficiency of water transport: their functional significance in a Hawaiian dry forest , 2000 .

[4]  Brian J Enquist,et al.  Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. , 2007, American journal of botany.

[5]  T. Killeen,et al.  Diversity, composition and structure of a tropical semideciduous forest in the Chiquitanía region of Santa Cruz, Bolivia , 1998, Journal of Tropical Ecology.

[6]  E. Sampaio,et al.  Phenology of Caatinga Species at Serra Talhada, PE, Northeastern Brazil , 1997 .

[7]  O. Phillips,et al.  Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots , 2020, PLANTS, PEOPLE, PLANET.

[8]  N. McDowell,et al.  Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics , 2019, Oecologia.

[9]  Marcos Heil Costa,et al.  Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: Are the wet and seasonally dry rain forests any different? , 2010 .

[10]  P. Reich,et al.  Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems , 2019, Science Advances.

[11]  Janice F. Leivas,et al.  Water productivity using SAFER - Simple Algorithm for Evapotranspiration Retrieving in watershed , 2017 .

[12]  P. T. K. Jacomine,et al.  Levantamento exploratório - reconhecimento de solos do Estado de Pernambuco. , 1973 .

[13]  Tommaso Anfodillo,et al.  Calibration of Granier-Type (TDP) Sap Flow Probes by a High Precision Electronic Potometer , 2019, Sensors.

[14]  Ricardo da Silva Torres,et al.  Leafing Patterns and Drivers across Seasonally Dry Tropical Communities , 2019, Remote. Sens..

[15]  J. Sperry,et al.  Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure , 2001, Oecologia.

[16]  Bruno D. Borges,et al.  Introducing digital cameras to monitor plant phenology in the tropics: applications for conservation , 2017 .

[17]  O. Tetens,et al.  Uber einige meteorologische begriffe , 1930 .

[18]  Antônio H. de C. Teixeira,et al.  Determining Regional Actual Evapotranspiration of Irrigated Crops and Natural Vegetation in the São Francisco River Basin (Brazil) Using Remote Sensing and Penman-Monteith Equation , 2010, Remote. Sens..

[19]  A. Verhoef,et al.  The use of remote sensing for reliable estimation of net radiation and its components: a case study for contrasting land covers in an agricultural hotspot of the Brazilian semiarid region , 2020, Agricultural and Forest Meteorology.

[20]  R. Pennington,et al.  Tropical savannas and dry forests , 2018, Current Biology.

[21]  A. Antonino,et al.  Do the phenology and functional stem attributes of woody species allow for the identification of functional groups in the semiarid region of Brazil? , 2012, Trees.

[22]  F. Baret,et al.  A comparison of methods for smoothing and gap filling time series of remote sensing observations - application to MODIS LAI products , 2012 .

[23]  M. Sobrado Trade-off between water transport efficiency and leaf life-span in a tropical dry forest , 1993, Oecologia.

[24]  A. Granier,et al.  Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. , 1987, Tree physiology.

[25]  R. B. Zandavalli,et al.  Functional groups of woody species in semi‐arid regions at low latitudes , 2015 .

[26]  J. R. Lemos,et al.  Fitossociologia do componente lenhoso de um trecho da vegetação de caatinga no Parque Nacional Serra da Capivara, Piauí, Brasil , 2002 .

[27]  G. Goldstein,et al.  Water economy of Neotropical savanna trees: six paradigms revisited. , 2008, Tree physiology.

[28]  A. Granier Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres , 1985 .

[29]  Margaret Kosmala,et al.  Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery , 2018, Scientific Data.

[30]  Rodrigo de Queiroga Miranda,et al.  Realistic and simplified models of plant and leaf area indices for a seasonally dry tropical forest , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[31]  Raghavan Srinivasan,et al.  Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review , 2016 .

[32]  Antonio Celso Dantas Antonino,et al.  Seasonal patterns of carbon dioxide, water and energy fluxes over the Caatinga and grassland in the semi-arid region of Brazil , 2017 .

[33]  Sophie Graefe,et al.  Tree Water Use Patterns as Influenced by Phenology in a Dry Forest of Southern Ecuador , 2018, Front. Plant Sci..

[34]  P. Reich,et al.  The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies , 2003, International Journal of Plant Sciences.

[35]  M. Rodal,et al.  Phenology and wood density of plants growing in the semi-arid region of northeastern Brazil , 2010 .

[36]  S. Reddy Climatic classification: the semi-arid tropics and its environment a review. , 1983 .

[37]  Marcelo F Simon,et al.  Forgotten forests - issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study , 2011, BMC Ecology.

[38]  L. Urban,et al.  Granier's Thermal Dissipation Probre (TDP) method for measuring sap flow in trees : theory and practice , 2004 .

[39]  Ranz,et al.  World Map of the Köppen-Geiger climate classification updated — Source link , 2006 .

[40]  Jonas S. von der Crone,et al.  An improved single probe method for sap flow measurements using finite heating duration , 2020 .

[41]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[42]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[43]  F. Rubel,et al.  The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100 , 2017 .

[44]  Lin Yan,et al.  Sentinel-2A multi-temporal misregistration characterization and an orbit-based sub-pixel registration methodology , 2018, Remote Sensing of Environment.

[45]  R. Pennington,et al.  Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests , 2009 .