Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain

No single genealogical reconstruction or typing method currently encompasses all levels of bacterial diversity, from domain to strain. We propose ribosomal multilocus sequence typing (rMLST), an approach which indexes variation of the 53 genes encoding the bacterial ribosome protein subunits (rps genes), as a means of integrating microbial genealogy and typing. As with multilocus sequence typing (MLST), rMLST employs curated reference sequences to identify gene variants efficiently and rapidly. The rps loci are ideal targets for a universal characterization scheme as they are: (i) present in all bacteria; (ii) distributed around the chromosome; and (iii) encode proteins which are under stabilizing selection for functional conservation. Collectively, the rps loci exhibit variation that resolves bacteria into groups at all taxonomic and most typing levels, providing significantly more resolution than 16S small subunit rRNA gene phylogenies. A web-accessible expandable database, comprising whole-genome data from more than 1900 bacterial isolates, including 28 draft genomes assembled de novo from the European Bioinformatics Institute (EBI) sequence read archive, has been assembled. The rps gene variation catalogued in this database permits rapid and computationally non-intensive identification of the phylogenetic position of any bacterial sequence at the domain, phylum, class, order, family, genus, species and strain levels. The groupings generated with rMLST data are consistent with current nomenclature schemes and independent of the clustering algorithm used. This approach is applicable to the other domains of life, potentially providing a rational and universal approach to the classification of life that is based on one of its fundamental features, the translation mechanism.

[1]  Keith A. Jolley,et al.  Population structure of Streptococcus oralis , 2009, Microbiology.

[2]  R. Rosselló-Móra,et al.  Shifting the genomic gold standard for the prokaryotic species definition , 2009, Proceedings of the National Academy of Sciences.

[3]  B. Birren,et al.  Genome Project Standards in a New Era of Sequencing , 2009, Science.

[4]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[5]  M. Wagner,et al.  Microbial diversity and the genetic nature of microbial species , 2008, Nature Reviews Microbiology.

[6]  Frank Oliver Glöckner,et al.  RibAlign: a software tool and database for eubacterial phylogeny based on concatenated ribosomal protein subunits , 2006, BMC Bioinformatics.

[7]  E. Delong,et al.  Application of rRNA-based probes for observing marine nanoplanktonic protists , 1993, Applied and environmental microbiology.

[8]  Baba,et al.  Genomic Analysis of the Genes Encoding Ribosomal Proteins in Eight Eubacterial Species and Saccharomyces cerevisiae. , 1998, Genome informatics. Workshop on Genome Informatics.

[9]  B. Snel,et al.  Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.

[10]  N. Ryan International Code of Nomenclature of Bacteria. Bacteriological Code , 1977 .

[11]  P. Hunter Reproducibility and indices of discriminatory power of microbial typing methods , 1990, Journal of clinical microbiology.

[12]  Julian Parkhill,et al.  Evolution of MRSA During Hospital Transmission and Intercontinental Spread , 2010, Science.

[13]  Giovanna Morelli,et al.  Phylogenetic diversity and historical patterns of pandemic spread of Yersinia pestis , 2010, Nature Genetics.

[14]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[15]  Christopher G. Dowson,et al.  Localized sex in bacteria , 1991, Nature.

[16]  E. Holmes,et al.  Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  I-Min A. Chen,et al.  The integrated microbial genomes system: an expanding comparative analysis resource , 2009, Nucleic Acids Res..

[18]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[19]  Tom Coenye,et al.  Opinion: Re-evaluating prokaryotic species. , 2005, Nature reviews. Microbiology.

[20]  Martin C. J. Maiden,et al.  BIGSdb: Scalable analysis of bacterial genome variation at the population level , 2010, BMC Bioinformatics.

[21]  Paul Keim,et al.  Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. , 2004, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[22]  Gregory E. Jordan,et al.  Assigning strains to bacterial species via the internet , 2009, BMC Biology.

[23]  P. Vandamme,et al.  Microbial systematics and taxonomy: relevance for a microbial commons. , 2010, Research in microbiology.

[24]  W. Martin,et al.  Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis. , 2000, International journal of systematic and evolutionary microbiology.

[25]  J. Gilbert,et al.  Microbial metagenomics: beyond the genome. , 2011, Annual review of marine science.

[26]  Sp Lapage,et al.  International Code of Nomenclature of Bacteria , 1992 .

[27]  D. Falush,et al.  Inference of Bacterial Microevolution Using Multilocus Sequence Data , 2007, Genetics.

[28]  J. Eisen,et al.  An Automated Phylogenetic Tree-Based Small Subunit rRNA Taxonomy and Alignment Pipeline (STAP) , 2008, PloS one.

[29]  T. Hansen Bergey's Manual of Systematic Bacteriology , 2005 .

[30]  A. Tomasz,et al.  Nomenclature of Major Antimicrobial-Resistant Clones of Streptococcus pneumoniae Defined by the Pneumococcal Molecular Epidemiology Network , 2001, Journal of Clinical Microbiology.

[31]  in chief George M. Garrity Bergey’s Manual® of Systematic Bacteriology , 1989, Springer New York.

[32]  M. Nei,et al.  Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.

[33]  Daniel R Zerbino,et al.  Using the Velvet de novo Assembler for Short‐Read Sequencing Technologies , 2010, Current protocols in bioinformatics.

[34]  Julian Parkhill,et al.  Microbiology in the post-genomic era , 2008, Nature Reviews Microbiology.

[35]  J. Burton,et al.  Rapid Pneumococcal Evolution in Response to Clinical Interventions , 2011, Science.

[36]  W. Ludwig,et al.  Notes on the characterization of prokaryote strains for taxonomic purposes. , 2010, International journal of systematic and evolutionary microbiology.

[37]  M. Achtman Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. , 2008, Annual review of microbiology.

[38]  J. Clarridge,et al.  Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases , 2004, Clinical Microbiology Reviews.

[39]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[40]  A. Bashan,et al.  Correlating ribosome function with high-resolution structures. , 2008, Trends in microbiology.

[41]  Peer Bork,et al.  Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy , 2011, Nucleic Acids Res..

[42]  J. Clarridge,et al.  Impact of 16 S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases , 2004 .

[43]  F. Delsuc,et al.  Phylogenomics: the beginning of incongruence? , 2006, Trends in genetics : TIG.

[44]  M. Achtman,et al.  Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Gevers,et al.  Re-evaluating prokaryotic species , 2005, Nature Reviews Microbiology.

[46]  M. Maiden Multilocus sequence typing of bacteria. , 2006, Annual review of microbiology.

[47]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[48]  D. Relman,et al.  An ecological and evolutionary perspective on human–microbe mutualism and disease , 2007, Nature.

[49]  Sp Lapage,et al.  International Code of Nomenclature of Bacteria: Bacteriological Code, 1990 Revision , 1992 .

[50]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[51]  C. Fraser,et al.  The Bacterial Species Challenge: Making Sense of Genetic and Ecological Diversity , 2009, Science.

[52]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[53]  E. Holmes,et al.  The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. , 1999, Molecular biology and evolution.

[54]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[55]  E Feil,et al.  Guidelines for the validation and application of typing methods for use in bacterial epidemiology. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[56]  R. Herwig,et al.  Phylogenetic analysis of the bacterial communities in marine sediments , 1996, Applied and environmental microbiology.

[57]  W. Whitman,et al.  Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. , 2002, International journal of systematic and evolutionary microbiology.

[58]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Joel Dudley,et al.  MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences , 2008, Briefings Bioinform..

[60]  B. Haas,et al.  A Catalog of Reference Genomes from the Human Microbiome , 2010, Science.

[61]  P. Hunter,et al.  Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity , 1988, Journal of clinical microbiology.

[62]  S. Giovannoni,et al.  The uncultured microbial majority. , 2003, Annual review of microbiology.

[63]  Zaida Luthey-Schulten,et al.  Molecular signatures of ribosomal evolution , 2008, Proceedings of the National Academy of Sciences.

[64]  Matthew Berriman,et al.  ACT: the Artemis comparison tool , 2005, Bioinform..

[65]  Natalia N. Ivanova,et al.  A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea , 2009, Nature.

[66]  W. Doolittle,et al.  On the origin of prokaryotic species. , 2009, Genome research.

[67]  Hervé Philippe,et al.  Archaeal phylogeny based on ribosomal proteins. , 2002, Molecular biology and evolution.