Recommendation with the Right Slice: Speeding Up Collaborative Filtering with Factorization Machines
暂无分享,去创建一个
We propose an alternative way to efficiently exploit rating data for collaborative filtering with Factorization Machines (FMs). Our approach partitions user-item matrix into ‘slices’ which are mutually exclusive with respect to items. The training phase makes direct use of the slice of interest (target slice), while incorporating information from other slices indirectly. FMs represent user-item interactions as feature vectors, and they offer the advantage of easy incorporation of complementary information. We exploit this advantage to integrate information from other auxiliary slices. We demonstrate, using experiments on two benchmark datasets, that improved performance can be achieved, while the time complexity of training can be reduced significantly.
[1] Martha Larson,et al. Cross-Domain Collaborative Filtering with Factorization Machines , 2014, ECIR.
[2] Alan Said,et al. WrapRec: an easy extension of recommender system libraries , 2014, RecSys '14.
[3] Lars Schmidt-Thieme,et al. Fast context-aware recommendations with factorization machines , 2011, SIGIR.
[4] Steffen Rendle,et al. Factorization Machines with libFM , 2012, TIST.
[5] Jure Leskovec,et al. The dynamics of viral marketing , 2005, EC '06.