A highly accurate differential evolution–particle swarm optimization algorithm for the construction of initial value problem solvers

ABSTRACT In this work a new evolutionary computation technique is introduced for the construction of initial value solvers based on Runge–Kutta (RK) pairs. The derivation of RK pairs corresponds to solving a nonlinear optimization problem with a multimodal objective function in a high dimensional search space; additional difficulty stems from the fact that only solutions with accuracy at least equal to machine epsilon are acceptable. The proposed approach involves hybridizing a Differential Evolution (DE) strategy with elements from Particle Swarm Optimization (PSO) in order to produce a method for solving optimization problems with high accuracy. The resulting methodology is applied to two different problems of RK pair derivation of orders 5 and 4 and compared with standard DE techniques. Numerical experiments show that the proposed hybrid DE-PSO satisfies the strict accuracy requirements imposed by the particular problem, while outperforming its rivals.

[1]  Ming-Feng Yeh,et al.  Particle swarm optimization with grey evolutionary analysis , 2013, Appl. Soft Comput..

[2]  Charalampos Tsitouras,et al.  Runge-Kutta pairs of order 5(4) satisfying only the first column simplifying assumption , 2011, Comput. Math. Appl..

[3]  J. Mukund Nilakantan,et al.  Robotic U-shaped assembly line balancing using particle swarm optimization , 2016 .

[4]  Jason Sheng-Hong Tsai,et al.  Improving Differential Evolution With a Successful-Parent-Selecting Framework , 2015, IEEE Transactions on Evolutionary Computation.

[5]  Ch. Tsitouras,et al.  Evolutionary generation of high order Runge – Kutta – Nyström type pairs for solving y(4) = f (x,y) , 2015 .

[6]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[7]  Ch. Tsitouras,et al.  Evolutionary construction of Runge–Kutta–Nyström pairs of orders 5(4) , 2016 .

[8]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[9]  Vitaliy Feoktistov Differential Evolution: In Search of Solutions , 2006 .

[10]  Hossein Nezamabadi-pour,et al.  A quantum inspired gravitational search algorithm for numerical function optimization , 2014, Inf. Sci..

[11]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[12]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[13]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[14]  Haralambos Sarimveis,et al.  Radial Basis Function Network Training Using a Nonsymmetric Partition of the Input Space and Particle Swarm Optimization , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[15]  Ioannis Th. Famelis,et al.  Differential evolution for the derivation of Runge Kutta pairs , 2015 .

[16]  Alex Alexandridis,et al.  Particle swarm optimization for complex nonlinear optimization problems , 2016 .

[17]  Ioannis Th. Famelis,et al.  On the modification of Differential Evolution strategy for the construction of Runge Kutta pairs , 2016 .

[18]  James H. Verner,et al.  Numerically optimal Runge–Kutta pairs with interpolants , 2010, Numerical Algorithms.

[19]  Amit Konar,et al.  Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives , 2008, Advances of Computational Intelligence in Industrial Systems.

[20]  John Fulcher,et al.  Computational Intelligence: An Introduction , 2008, Computational Intelligence: A Compendium.

[21]  Saman K. Halgamuge,et al.  Particle Swarm Optimization with Self-Adaptive Acceleration Coefficients , 2002, FSKD.

[22]  Prasanta K. Jana,et al.  PSO-based approach for energy-efficient and energy-balanced routing and clustering in wireless sensor networks , 2017, Soft Comput..

[23]  Ioannis Th. Famelis,et al.  Symbolic derivation of Runge-Kutta order conditions , 2004, J. Symb. Comput..

[24]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[25]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[26]  S. Shamsuddin,et al.  Solving initial and boundary value problems using learning automata particle swarm optimization , 2015 .

[27]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[28]  Hao Zheng,et al.  A novel clustering-based differential evolution with 2 multi-parent crossovers for global optimization , 2012, Appl. Soft Comput..

[29]  K. Chandrashekhara,et al.  Particle swarm-based structural optimization of laminated composite hydrokinetic turbine blades , 2015 .

[30]  R. D'Agostino,et al.  Goodness-of-Fit-Techniques , 1987 .

[31]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[32]  Peter A. N. Bosman,et al.  On Gradients and Hybrid Evolutionary Algorithms for Real-Valued Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[33]  Tung-Kuan Liu,et al.  Hybrid Taguchi-genetic algorithm for global numerical optimization , 2004, IEEE Transactions on Evolutionary Computation.

[34]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[35]  Jordan Radosavljević,et al.  Energy and operation management of a microgrid using particle swarm optimization , 2016 .

[36]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .