Crystallization process and glass stability of an Fe 48 Cr 15 Mo 14 C 15 B 6 Tm 2 bulk metallic glass

The crystallization process in an ${\text{Fe}}_{48}{\text{Cr}}_{15}{\text{Mo}}_{14}{\text{C}}_{15}{\text{B}}_{6}{\text{Tm}}_{2}$ metallic glass has been investigated by means of nanobeam and selected area electron-diffraction techniques. We found that the first crystallization reaction proceeds through a complicated nanoscale process, that is, $\text{amorphous}\ensuremath{\rightarrow}\ensuremath{\chi}\text{-FeCrMo}$-like long-period $\text{structures}\ensuremath{\rightarrow}\ensuremath{\chi}\text{-FeCrMo}\ensuremath{\rightarrow}{M}_{23}{\text{C}}_{6}$. A long-period structure began forming as an extended structure of medium range order; its periodicity gradually changed with the growing stage on annealing, and the structure finally changed into $\ensuremath{\chi}\text{-FeCrMo}$. The common structural unit among these structures was found to be an atomic coordination polyhedron with a coordination number of 16. On the basis of the results, we discuss the phase stability of the ${\text{Fe}}_{48}{\text{Cr}}_{15}{\text{Mo}}_{14}{\text{C}}_{15}{\text{B}}_{6}{\text{Tm}}_{2}$ metallic glass as well as its local atomic arrangements.

[1]  S. Poon,et al.  Local organization and atomic clustering in multicomponent amorphous steels , 2008 .

[2]  Y. Wang,et al.  Icosahedral ordering in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass , 2008 .

[3]  S. Poon,et al.  The role of Y/lanthanides on the glass forming ability of amorphous steel , 2007 .

[4]  A. Hirata,et al.  Compositional dependence of local atomic structures in amorphousFe100−xBx(x=14,17,20)alloys studied by electron diffraction and high-resolution electron microscopy , 2006 .

[5]  K. Amiya,et al.  Fe-(Cr,Mo)-(C,B)-Tm Bulk Metallic Glasses with High Strength and High Glass-Forming Ability , 2006 .

[6]  E. N. Vlasova,et al.  Metastable and quasiperiodic phases in rapidly quenched Fe–B–Si–Nb(Cu) alloys , 2006 .

[7]  M. Wollgarten,et al.  Decomposition and crystallization of Pd40Cu30Ni10P20 and Zr46.8Ti8.2Cu7.5Ni10Be27.5 metallic glasses , 2004 .

[8]  T. Ohkubo,et al.  Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass , 2004 .

[9]  C. Liu,et al.  Structural amorphous steels. , 2004, Physical review letters.

[10]  S. Poon,et al.  Fe-based bulk metallic glasses with diameter thickness larger than one centimeter , 2004 .

[11]  W. Johnson,et al.  Devitrification of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass studied by XRD, SANS, and NMR , 2003 .

[12]  A. Inoue,et al.  Quasicrystals from glass devitrification , 2003 .

[13]  A. Inoue,et al.  New Fe-Cr-Mo-(Nb, Ta)-C-B Glassy Alloys with High Glass-Forming Ability and Good Corrosion Resistance , 2001 .

[14]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[15]  S. Roos,et al.  Formation of quasicrystals in bulk glass forming Zr–Cu–Ni–Al alloys , 1996 .

[16]  Y. Waseda,et al.  Structural Studies of New Metallic Amorphous Alloys with Wide Supercooled Liquid Region ( Overview ) , 1995 .

[17]  A. Inoue,et al.  Nonequilibrium Phases in Fe–X–C (X=Cr, Mo or W) Ternary Alloys Quenched Rapidly from Melts , 1981 .

[18]  N. Nereson,et al.  The crystal structure of Cr23C6 , 1972 .

[19]  M. Mitarai,et al.  The relation between electron concentration and stacking variants in the alloy systems Mg–Cu–Ni, Mg–Cu–Zn and Mg–Ni–Zn , 1972 .

[20]  R. S. Toth,et al.  Effect of Additional Elements on the Period of CuAu II and the Origin of the Long-Period Superlattice , 1961 .

[21]  J. W. Barton,et al.  The crystal structure of Ti2Ni , 1959 .

[22]  J. Kasper,et al.  The ordering of atoms in the chi-phase of the iron-chromium-molybdenum system , 1954 .