Bootstrapping Pseudolikelihood Models for Clustered Binary Data

Asymptotic properties of the parametric bootstrap procedure for maximum pseudolikelihood estimators and hypothesis tests are studied in the general framework of associated populations. The technique is applied to the analysis of toxicological experiments which, based on pseudolikelihood inference for clustered binary data, fits into this framework. It is shown that the bootstrap approximation can be used as an interesting alternative to the classical asymptotic distribution of estimators and test statistics. Finite sample simulations for clustered binary data models confirm the asymptotic theory and indicate some substantial improvements.

[1]  R. Mukerjee Comparison of tests in the multiparameter case. part I. second-order power , 1990 .

[2]  Gauss M. Cordeiro,et al.  Nonnull asymptotic distributions of three classic criteria in generalised linear models , 1994 .

[3]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[4]  Comparison of tests in the multiparameter case. part II. a third-order optimality property of Rao's test , 1990 .

[5]  N. Jewell,et al.  Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data , 1990 .

[6]  W. Piegorsch,et al.  Assessing overdispersion and dose-response in the male dominant lethal assay. , 1992, Mutation research.

[7]  M. Lindstrom,et al.  A survey of methods for analyzing clustered binary response data , 1996 .

[8]  C J Portier,et al.  An evaluation of some methods for fitting dose-response models to quantal-response developmental toxicology data. , 1993, Biometrics.

[9]  Nanny Wermuth,et al.  A note on the quadratic exponential binary distribution , 1994 .

[10]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[11]  G. Molenberghs,et al.  Pseudolikelihood Modeling of Multivariate Outcomes in Developmental Toxicology , 1999 .

[12]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[13]  K. Chanda A NOTE ON THE CONSISTENCY AND MAXIMA OF THE ROOTS OF LIKELIHOOD EQUATIONS , 1954 .

[14]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[15]  D. Cox The Analysis of Multivariate Binary Data , 1972 .

[16]  R. Beran Prepivoting Test Statistics: A Bootstrap View of Asymptotic Refinements , 1988 .

[17]  Byron J. T. Morgan Analysis of Quantal Response Data , 1992 .

[18]  T. K. Chandra,et al.  On the optimality of rao's statistic , 1984 .

[19]  Peter C. B. Phillips,et al.  ON THE FORMULATION OF WALD TESTS OF NONLINEAR RESTRICTIONS , 1986 .

[20]  Geert Molenberghs,et al.  Pseudo-likelihood inference for clustered binary data , 1997 .

[21]  M. D. Hogan,et al.  The impact of litter effects on dose-response modeling in teratology. , 1986, Biometrics.

[22]  W. R. Schucany,et al.  Improved bootstrap confidence intervals in certain toxicological experiments , 1995 .

[23]  Ralph A. Bradley,et al.  The asymptotic properties of ML estimators when sampling from associated populations , 1962 .

[24]  G. Molenberghs,et al.  An exponential family model for clustered multivariate binary data , 1999 .